Systems of ODEs

Toy Example: Here is an extremely simplistic model of disease spread:

- $H(t) =$ number of healthy people at time t (in years)
- $I(t) =$ number of infected people at time t
- $D(t) =$ number of dead people at time t

Assumptions:

1. Healthy people are infected at a rate of $0.3 \times \text{#healthy people}$
2. Infected people recover at a rate of $0.9 \times \text{#infected people}$
3. Infected people die at a rate of $0.1 \times \text{#infected people}$

In equations:

1. $\frac{dH}{dt} = -0.3H + 0.9I$
2. $\frac{dI}{dt} = 0.3H - 0.9I - 0.1I$
3. $\frac{dD}{dt} = 0.1I$
Matrix Form: let \(u(t) = (u_1(t), I(t), D(t)) \).

\[
\frac{du(t)}{dt} = u'(t) = \begin{bmatrix}
-0.3 & 0.9 & 0 \\
0.3 & -0.9 & 0.1 \\
0 & 0.1 & 0
\end{bmatrix} u(t)
\]

Def: A system of linear ordinary differential equations (ODEs) is a system of equations in unknown functions \(u_1(t), \ldots, u_n(t) \) equating the derivatives \(u_i' \) with a linear combination of the \(u_i \):

\[
u_1'(t) = a_1 u_1(t) + \cdots + a_n u_n(t)
\]

\[
u_2'(t) = a_1 u_1(t) + \cdots + a_n u_n(t)
\]

Matrix form: writing \(u(t) = (u_1(t), \ldots, u_n(t)) \) and \(u'(t) = (u_1'(t), \ldots, u_n'(t)) \), a system of linear ODEs has the form

\[
u'(t) = A u(t)
\]

for an \(n \times n \) matrix \(A \)

(with numbers in it, not functions of \(t \)).

If you also specify the initial value \(u(0) = u_0 \), this is called an initial value problem.
How to solve a system of linear ODEs?

Diagonalize A!

Eg: Suppose \(u_0 \) is an eigenvector of \(A \): \(Au_0 = \lambda u_0 \).

Then the solution of the initial value problem

\[
u' = Au \quad u(0) = u_0 \quad \text{is} \quad u(t) = e^{\lambda t} u_0.
\]

\[
u'(t) = \frac{d}{dt} e^{\lambda t} u_0 = \lambda e^{\lambda t} u_0
\]

\[
A u(t) = A e^{\lambda t} u_0 = e^{\lambda t} A u_0 = \lambda e^{\lambda t} u_0
\]

\[
u(0) = e^{\lambda 0} u_0 = u_0
\]

In general, we expand \(u_0 \) in an eigenbasis, as for difference equations:

\[
u_0 = x_1 \omega_1 + \cdots + x_n \omega_n \quad A\omega_i = \lambda_i \omega_i
\]

\[
u(t) = e^{\lambda_1 t} x_1 \omega_1 + \cdots + e^{\lambda_n t} x_n \omega_n
\]

is the solution of \(u' = Au, \quad u(0) = u_0 \).

Check:

\[
u'(t) = \lambda_1 e^{\lambda_1 t} x_1 \omega_1 + \cdots + \lambda_n e^{\lambda_n t} x_n \omega_n
\]

\[
A u(t) = e^{\lambda_1 t} x_1 A \omega_1 + \cdots + e^{\lambda_n t} x_n A \omega_n
\]

\[
= \lambda_1 e^{\lambda_1 t} x_1 \omega_1 + \cdots + \lambda_n e^{\lambda_n t} x_n \omega_n
\]

\[
u(0) = e^{\lambda_0} x_1 \omega_1 + \cdots + e^{\lambda_0} x_n \omega_n = u_0
\]
Eg: In our infectious disease model, suppose $u_0 = (1000, 1, 0)$ (1000 healthy people, 1 infected, 0 dead)

Eigenvalues of $A = \begin{pmatrix} -0.3 & 9 & 0 \\ 0.3 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ are

$\lambda_1 \approx -0.0235$

$\lambda_2 \approx -1.28$

$\lambda_3 = 0$

Eigenvalues are

$\lambda_1 \approx \begin{pmatrix} 11.77 \\ -12.77 \\ 0 \end{pmatrix}$

$\lambda_2 \approx \begin{pmatrix} 0.765 \\ -.255 \\ 0 \end{pmatrix}$

$\lambda_3 = (0)$

Solved $u_0 = x_1 w_1 + x_2 w_2 + x_3 w_3$

$\begin{pmatrix} 1000 \\ 0 \end{pmatrix} \approx 18.70 \omega_1 - 1019.70 \omega_2 + 1001 \omega_3$

Solution is:

$u(t) = e^{-0.0235t} (18.70 \omega_1 - e^{-1.28t} \cdot 1019.70 \omega_2 + 1001 \omega_3)$

$H(t) = 220 e^{-0.0235t} + 780 e^{-1.28t}$

$I(t) = -238 e^{-0.0235t} + 239 e^{-1.28t}$

$D(t) = 18.7 e^{-0.0235t} - 1019.7 e^{-1.28t} + 1001$

Looks like the human race is doomed...
Procedure for solving a linear system of ODEs using diagonalization:

To solve $u' = Au$, $u(0) = u_0$ when A is diagonalizable:

1. Diagonalize A: get an eigenbasis $\{w_1, \ldots, w_n\}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$.

2. Expand u_0 in the eigenbasis:
 solve $u_0 = x_1w_1 + \cdots + x_nw_n$

Solution:
$$u(t) = e^{\lambda_1 t} x_1w_1 + \cdots + e^{\lambda_n t} x_nw_n$$

Compare to:

Procedure for solving a Difference Equation using diagonalization:

To solve $v_{k+1} = Av_k$, v_0 fixed when A is diagonalizable:

1. Diagonalize A: get an eigenbasis $\{w_1, \ldots, w_n\}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$.

2. Expand v_0 in the eigenbasis:
 solve $v_0 = x_1w_1 + \cdots + x_nw_n$

Solution:
$$v_k = \lambda_1^k x_1w_1 + \cdots + \lambda_n^k x_nw_n$$
This works fine with complex eigenvalues. As with difference equations, you can write the solution with real numbers using trig functions.

Eg: \(u_1'(t) = u_2, \ u_2'(t) = -4u_1, \)

\(u_1(0) = 2 \quad u_2(0) = 0 \)

\(\Rightarrow \ u' = Au \quad \text{for} \quad A = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \ u(0) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \)

Eigenvalues are \(\lambda = 2i, \ \bar{\lambda} = -2i \)

Eigenvectors are \(w = \begin{pmatrix} 1 \\ 2i \end{pmatrix} \quad \bar{w} = \begin{pmatrix} 1 \\ -2i \end{pmatrix} \)

Solve \(\begin{pmatrix} 2 \\ 0 \end{pmatrix} = x_1w + x_2\bar{w} \Rightarrow x_1 = x_2 = 1 \)

Solution is

\(u(t) = e^{\lambda t}w + e^{\bar{\lambda}t}\bar{w} = 2\text{Re}[e^{\lambda t}w] \)

\(= 2\text{Re}[e^{2it}\begin{pmatrix} 1 \\ 2i \end{pmatrix}] = 2\text{Re}\left((\cos(2t) + i\sin(2t))\begin{pmatrix} 1 \\ 2i \end{pmatrix}\right) \)

\(= 2\text{Re}\left(\begin{pmatrix} \cos(2t) + i\sin(2t) \\ -2\sin(2t) + 2i\cos(2t) \end{pmatrix}\right) = \begin{pmatrix} 2\cos(2t) \\ -4\sin(2t) \end{pmatrix} \)

Check:

\(u_1' = (2\cos(2t))' = -4\sin(2t) = u_2 \)

\(u_2' = (-4\sin(2t))' = -8\cos(2t) = -4u_1 \)

\(u_1(0) = 2 \quad u_2(0) = 0 \)
This method can also be used to solve (linear) ODEs containing higher-order derivatives.

Eg: Hooke’s Law says the force applied by a spring is proportional to the amount it is stretched or compressed:

\[F(t) = -k \ p(t) \quad k > 0 \]

\[F = ma, \quad a = \text{acceleration} = p''; \text{ replace } k \text{ by } kf_m: \]

\[p''(t) = -kp(t) \]

Trick: Let \(u_1 = p, u_2 = p' \). Then

\[u_1' = u_2, \quad u_2' = -ku_1. \]

This is the system

\[u'(t) = \begin{pmatrix} 0 & 1 \\ -k & 0 \end{pmatrix} u(t). \]

We solved this before for \(k = 4, \ u(0) = (2, 0) \):

\[p(t) = 2 \cos(2t) \]

\[p'(t) = -4 \sin(2t) \]

oscillation.
The Matrix Exponential

There are 2 features missing from the ODEs picture that we had for difference equations:

1. **Matrix form**: \(V_k = CD^k C^{-1} V_0 \)

2. **Existence of solutions**: it's obvious that \(V_k = A^k V_0 \) has a solution — it was not obvious how to compute it. Both can be filled in using the matrix exponential.

Recall: Using Taylor expansions, you can write

\[
e^x = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \cdots \quad \text{(convergent sum)}
\]

Def: Let \(A \) be an \(n \times n \) matrix. The matrix exponential is the \(n \times n \) matrix

\[
e^A = I_n + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \cdots \quad \text{(convergent sum)}
\]

Eq: \(A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \rightarrow A^2 = 0 \), so

\[
e^{At} = I_2 + At + 0 + \cdots = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}
\]
Eg: $A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda_2 \end{pmatrix}$ so $A^k = \begin{pmatrix} \lambda^k & 0 \\ 0 & \lambda_2^k \end{pmatrix}$, so
$$e^{At} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} \lambda t & 0 \\ 0 & \lambda_2 t \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \lambda^2 t^2 & 0 \\ 0 & \frac{1}{2} \lambda_2^2 t^2 \end{pmatrix} + \cdots = \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\lambda_2 t} \end{pmatrix}$$

Why do we care about e^{At}?

Fact: $\frac{d}{dt} e^{At} = Ae^{At}$

Consequence: $u(t) = e^{At}u_0$ solves the linear ODE
$$u'(t) = Au(t) \quad u(0) = u_0$$

In particular, a solution exists.

The equations
$$u(t) = e^{At}u_0 \quad \text{and} \quad v_k = A^k v_0$$
are analogous: they both show a solution exists, but give you no way to compute it.

Eg: If $A = CDC^{-1}$ is diagonalizable, then $e^{At} = Ce^{Dt}C^{-1} = C \begin{pmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{pmatrix}C^{-1}$. This is computable!
The equations
\[e^{At} = Ce^{Dt}C^{-1} \quad \text{and} \quad A^k = CD^kC^{-1} \]
are also analogous: they are computable!

In fact, if you expand out
\[u(t) = Ce^{Dt}C^{-1}u_0 \]
you exactly get the vector form
\[u(t) = e^{A_1t}x_1 + \cdots + e^{A_nt}x_nw_n \]
where \((x_1, \ldots, x_n) = C^{-1}u_0 \).

<table>
<thead>
<tr>
<th>Difference Equation</th>
<th>Dictionary</th>
<th>Initial Value Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{k+1} = AV_k)</td>
<td>(v_0) fixed</td>
<td>Problem: (u'(t) = Au(t)) (u(0)) fixed</td>
</tr>
<tr>
<td>(V_k = A^kV_0)</td>
<td>Uncomputable Solution</td>
<td>(u(t) = e^{At}u(0))</td>
</tr>
<tr>
<td>(V_k = \lambda_1^kx_1 + \cdots + \lambda_n^kx_nw_n)</td>
<td>Computable Solution</td>
<td>(u(t) = e^{A_1t}x_1 + \cdots + e^{A_nt}x_nw_n) for (u(0) = x_1w_1 + \cdots + x_nw_n) (when diagonalizable)</td>
</tr>
<tr>
<td>(A^k = CD^kC^{-1})</td>
<td>Matrix Form</td>
<td>(e^{At} = Ce^{Dt}C^{-1})</td>
</tr>
</tbody>
</table>