Determinants \& Cofactors
Last time: we defined determinants using row ops:
(1) If $A \xlongequal{R_{i}+=c R}, B$ then $\operatorname{det}(A)=\operatorname{det}(B)$.
(2) If $A \xrightarrow{R-x=c} B$
then $\operatorname{det}(A)=\frac{1}{c} \operatorname{det}(B)$.
(3) If $A \stackrel{R_{i} \leftrightarrow R_{3}}{\longrightarrow} B$ then $\operatorname{det}(A)=-\operatorname{det}(B)$
(4) $\operatorname{det}\left(I_{n}\right)=1$.

This is the fastest algorithm for computing the cleft of a general matrix with known entries. But what if the matrix has unknown entries? This becomes tedious because you don't know if an entry B a pivot!
Eg: $\operatorname{det}\left(\begin{array}{ccc}-\lambda & 1 & 3 \\ 1 & 2-\lambda & 1 \\ 1 & 1 & -\lambda\end{array}\right)=? \quad I_{s}-\lambda$ a pivot?
Cofactor expansion is a handy recursive formula for the determinant that is useful in this setting.
Recursive: Compute $\operatorname{det}(n \times n)$ by computing several $\operatorname{det}((n-1) \times(n-1))$.

Def: Let A be an $n \times n$ matrix.

- The lias) minor $A_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the th row \& th column.
- The (Vj) contactor $C_{i j}$ is

$$
C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)
$$

- The cofactor matrix B the matrix C whose (is) entry is $C_{i j}$.
$E g: A=\left(\begin{array}{lll}0 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 0\end{array}\right) \quad A_{21}=\left(\begin{array}{lll}0 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 3 \\ 1 & 0\end{array}\right)$

$$
C_{21}=(-1)^{2+1} \operatorname{det}\left(\begin{array}{ll}
1 & 3 \\
1 & 0
\end{array}\right)=-(-3)=3
$$

$N B:(-1)^{i+j}$ follows a $\left(\begin{array}{c} \pm+ \\ + \\ + \\ +(-1)^{i+j}=1\end{array}\right.$ checkerboard patter: $\left(\begin{array}{ll}- & - \\ + & - \\ +\end{array}\right)-(-1)^{i+5}=-1$
The (Cofactor Expansion): A is an nun matrix, $a_{i j}=\left(i_{i j}\right)$ entry of $A, C_{i j}=\left(i_{i j}\right)$ cofactor.
(1) Cofactor expansion along the it row:

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} C_{i j}=a_{i i} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

(2) Cofactor expansion along the $5^{\text {th }}$ column

$$
\operatorname{det}(A)=\sum_{i=1}^{h} a_{j} C_{i j}=a_{1 j} C_{j j}+a_{2 j} C_{2 j}+\cdots+a_{j j} C_{i j}
$$

$E_{g}: A=\left(\begin{array}{lll}0 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 0\end{array}\right)$

- Expand cofactors along the $3^{\text {od }}$ row:

$$
\begin{aligned}
\operatorname{det}(A) & =1 \cdot \operatorname{det}\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)+1 \cdot-\operatorname{det}\left(\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right)+\operatorname{Oddet}\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) \\
& =1 \cdot(1-6)-1 \cdot(-3)=-2
\end{aligned}
$$

- Expand cofactors along the $2^{n i}$ column:

$$
\begin{aligned}
\operatorname{det}(A) & =1 \cdot-\operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+2 \cdot \operatorname{det}\left(\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right)+1 \cdot \operatorname{det}\left(\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right) \\
& =1 \cdot-(-1)+2 \cdot(-3)+1 \cdot-(-3)=1-6+3=-2
\end{aligned}
$$

Remarks:
(1) This is a recursive formula: $C_{i j}=\operatorname{det}((n-1) \times(n-1))$
(2) You can compute $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$ however you like: you'll always get the same number
(3) Expanding along any row or column gives you $\operatorname{det}(A)$ - always the same number.
(4) This is handy when your matrix has unknown entries or a row/col with a lot of zeros - otherwise it's ridiculously slow $\left.=\sigma_{n}!-n\right)$.

Eg:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
-\lambda & 1 & 3 \\
1 & 2-\lambda & 1 \\
1 & 1 & -\lambda
\end{array}\right) \\
& \frac{\text { expand }}{\sqrt{5+01}}(-\lambda) \operatorname{det}\left(\begin{array}{cc}
2-\lambda & 1 \\
1 & -\lambda
\end{array}\right)+1 \cdot-\operatorname{det}\left(\begin{array}{ll}
1 & 3 \\
1 & -\lambda
\end{array}\right)+1 \cdot \operatorname{det}\left(\begin{array}{cc}
1 & 3 \\
2-\lambda & 1
\end{array}\right) \\
& =-\lambda((2-\lambda)(-\lambda)-1)+1 \cdot-(-\lambda-3)+1 \cdot(1-3(2-\lambda)) \\
& =-\lambda\left(-2 \lambda+\lambda^{2}-1\right)+(\lambda+3)+1-3(2-\lambda) \\
& =-\lambda^{3}+2 \lambda^{2}+5 \lambda-2
\end{aligned}
$$

In fact, for 3×3 matrices its not so hard to compute the determinant when all entries are unknown:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\operatorname{adet}\left(\begin{array}{ll}
e & f \\
h & i
\end{array}\right)-b \operatorname{det}\left(\begin{array}{ll}
d & f \\
g & i
\end{array}\right)+\operatorname{cdet}\left(\begin{array}{ll}
d & e \\
g & h
\end{array}\right) \\
& =a(e i-f h)-b(d i-f g)+c(d h-g e) \\
& =a c i+b f g+c d h-a f h-b d i-c e g
\end{aligned}
$$

Hos to remember this?
Sorus' Scheme: To compute $\operatorname{det}(3 \times 3$ matrix):

$$
\begin{array}{ll}
a & b \\
d e t & \text { e } \\
d & \text { et } \\
\text { ai }
\end{array} \mathrm{ffg}_{\mathrm{g}}+c d h
$$

$$
\text { ghtigb } \quad-c e y-a f h-b d i
$$

Sum the products of fonsand diagonals, subtract products of backwards diagonals.
Eg_{g}

$$
\begin{array}{rlll}
\operatorname{det}\left(\begin{array}{lll}
0 & 1 & 3 \\
1 & 2 & 1 \\
1 & 1 & 0
\end{array}\right)= & =0 \cdot 2 \cdot 0+1 \cdot 1 \cdot 1+3 \cdot 1 \cdot 1 \\
0 & -1 \cdot 2 \cdot 3-1 \cdot 1 \cdot 0-0 \cdot 1 \cdot 1 \\
1 & 2 & 1 & =
\end{array}
$$

Waning: This only works for 3×3 matrices!
\rightarrow See the big formula at the end for $n \times n$ matrices.
Eg: $\operatorname{det}\left(\begin{array}{cccc}2 & 5 & -3 & -1 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 0 \\ -1 & 6 & 4 & 0\end{array}\right) \quad \begin{gathered}\text { column with } \\ \text { lots of zeros }\end{gathered}$

$$
\begin{aligned}
= & -1 \cdot-\operatorname{det}\left(\begin{array}{ccc}
-2 & -3 & 2 \\
1 & 3 & -2 \\
-1 & 6 & 4
\end{array}\right)-5 \cdot \operatorname{det}\left(\begin{array}{ccc}
2 & 5 & -3 \\
1 & 3 & -2 \\
-1 & 6 & 4
\end{array}\right) \\
& +0 \cdot-\operatorname{det}\binom{\operatorname{don} t}{\text { care }}+0 \cdot \operatorname{det}\binom{\text { dunt }}{\text { care }} \\
= & 1(-24)-5(11)=-24-55=-79
\end{aligned}
$$

only computed
two 3×3 dots
Better: Do a row operation first!

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cccc}
2 & 5 & -3 & -1 \\
-2 & -3 & 2 & -5 \\
1 & 3 & -2 & 0 \\
-1 & 6 & 4 & 0
\end{array}\right) \stackrel{R_{2}-5 R_{1}}{=} \operatorname{det}\left(\begin{array}{cccc}
2 & 5 & -3 & -1 \\
-12 & -28 & 17 & 0 \\
1 & 3 & -2 & 0 \\
-1 & 6 & 4 & 0
\end{array}\right) \\
& \quad=-1 \cdot-\operatorname{det}\left(\begin{array}{ccc}
-12 & -28 & 17 \\
-1 & 3 & -2
\end{array}\right)=-79
\end{aligned}
$$

only computed one 3+3 et

Methods for Computing Determinants
(1) Special formulas $(2 \times 2,3 \times 3)$
\rightarrow best for small matrices, except 3×3 with lots of O s
(2) Cofactor expansion
\rightarrow best if you have unknown entries, or a row/ column with lets of zeros.
(3) Now (\&column) operations
\rightarrow best if you have a big matrix with no unknown entries \& no row or column with lots of zeros.
(4) Any combination of the above
\rightarrow eg. do a row op. to create a column with lots of zeros, then expand coftactors...

The : Let C be the cofactor matrix of A. Then

$$
A C^{\top}=\operatorname{det}(A) I_{n}=C^{\top} A
$$

In particular, if $\operatorname{det}(A) \neq 0$, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} C^{T} \quad \text { see supplement }
$$

\rightarrow Ridiculously inefficient computationally.

$$
\text { Eg: } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \leadsto A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

\leadsto generalizes the formula for 2×2 inverse

Cross Products
This is an operation you can de to vectors in \mathbb{R}^{3}.
Recall: the unit vectors in \mathbb{R}^{3} are

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Def: Let $v=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \quad v=\binom{d}{f} \in \mathbb{R}^{3}$.
The cross product is

$$
v \times w=\left(\begin{array}{l}
b f-e c \\
c d-a f \\
a e-b d
\end{array}\right) \in \mathbb{R}^{3}
$$

So the cross product is (vector) $\times($ vector $) \leadsto$ (vector)
Here's how you remember it:

$$
\begin{aligned}
& \left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \times\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right)=" \operatorname{det}\left(\begin{array}{ccc}
e_{1} & e_{2} & e_{3} \\
a & b & c \\
d & e & f
\end{array}\right)^{\prime} \\
& =e_{1} \operatorname{det}\left(\begin{array}{ll}
b & c \\
e & f
\end{array}\right)-e_{2} \operatorname{det}\left(\begin{array}{ll}
a & c \\
d & f
\end{array}\right)+e_{3} \operatorname{det}\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right) \\
& =(b f-e c) e_{1}-(a f-a d) e_{2}+(a e-b d) e_{3} \\
& =\left(\begin{array}{l}
b f-e c \\
c d-a f \\
a e-b d
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
E g:\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) & \times\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=" \operatorname{det}\left(\begin{array}{lll}
e_{1} & e_{2} & e_{3} \\
1 & 2 & 1 \\
1 & 1 & 0
\end{array}\right)^{\prime \prime} \\
& =e_{1} \operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)-e_{2} \operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+e_{3} \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right) \\
& =-e_{1}+e_{2}-e_{3}=\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

Def: Let $u, v, w \in \mathbb{R}^{3}$. The triple product is

$$
u \cdot(v \times w)=\operatorname{det}\left(\begin{array}{l}
-u^{\top}- \\
-v^{\top}- \\
-w^{\top}-
\end{array}\right)
$$

Check: if $v=(a, b, c) \quad \omega=(d, e, f) \quad u=(g, h, i)$ then

$$
\begin{aligned}
& u \cdot\left(\begin{array}{l}
v \times \sim
\end{array}\right) \\
& =\left(\begin{array}{l}
9 \\
b \\
i
\end{array}\right) \cdot\left(\operatorname{edet}\left(\begin{array}{ll}
b & c \\
e & f
\end{array}\right)-e_{2} \operatorname{det}\left(\begin{array}{ll}
a & c \\
d & f
\end{array}\right)+e_{3} \operatorname{det}\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right)\right) \\
& = \\
& =\operatorname{det}\left(\begin{array}{ll}
b & c \\
e & f
\end{array}\right)-h \operatorname{det}\left(\begin{array}{ll}
a & c \\
d & f
\end{array}\right)+i \operatorname{det}\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{lll}
g & h & i \\
a & b & c \\
d & e & f
\end{array}\right) \\
& E_{g} \quad u=\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right) \quad v=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \quad u=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
& v \times \omega=\left(\begin{array}{c}
-1 \\
i \\
-1
\end{array}\right) \quad u \cdot\left(\begin{array}{ll}
v \times w
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right)=1-3=-2 \\
& \quad \operatorname{det}\left(\begin{array}{lll}
0 & 1 & 3 \\
1 & 2 & 1 \\
1 & 1 & 0
\end{array}\right)=-2
\end{aligned}
$$

Properties:
(1) $v \times w \perp v$ and $v \times w \perp w$
\rightarrow because $v \cdot(v \times \omega)=\operatorname{det}\binom{\stackrel{-}{v}-v_{-}^{\top}}{\omega_{-}^{\top}}=0$
(2) $\omega \times v=-r \times \omega$
\rightarrow because $\operatorname{det}\left(\begin{array}{lll}e_{1} & e_{2} & c_{3} \\ -\omega_{3} \\ -v^{\prime}-\end{array}\right)=-\operatorname{det}\left(\begin{array}{lll}c_{1} & e_{2} & e_{3} \\ -v^{\prime} & \omega^{\top} & =\end{array}\right)$
(3) $\left\|r x_{\omega}\right\|=\|r\| \cdot\left\|_{0}\right\| \cdot \sin (\theta)$
\rightarrow compare $\quad v-\omega=\|r\| \cdot\|\cdot\| \cdot \cos (\theta)$

(4) $v \times \omega=0 \Longleftrightarrow v$, w are collinear (then $\theta=0$ or $180^{\circ} \Leftrightarrow \sin (\theta)=0$)
(5) $v \times w$ points in the direction determined by the right hand rule.

$N B=(1),(3), \&(5)$ characterize $v \times \infty$.

The Big Formula
This is an explicit formula for $\operatorname{det}(A)$.
It's useful for some things but not practical it has n ! terms!

Def: A permutation of $\{1, \ldots, n\}$ is a re-ardering $\sigma:\{b, \ldots, n\} \rightarrow\{1, \ldots, n\}$
$\sigma(i)=$ new number in $i^{\text {th }}$ position

$$
\begin{array}{llllll}
E g: & 1 & 2 & 3 & 4 & \sigma(1)=3 \\
1 & 1 & 1 & 5 & \sigma(3)=2 \\
3 & 1 & 2 & 4 & \sigma(2)=1 & \sigma(4)=4
\end{array}
$$

Q: how many permutations of $\{1, \ldots, n\}$ are there?

- n chaizes for 1 est spot
- $(n-1)$ choices for $2^{\text {nd }}$ spot
- I' chare for last spot

So $n \cdot(n-1) \cdot \cdots(1)=n$!
$E_{g: ~} n=3: 123 \longrightarrow$

$$
\begin{gathered}
123 \quad 132 \quad 213 \quad 231 \quad 312 \quad 321 \\
6=3 \cdot 2 \cdot 1=3!
\end{gathered}
$$

Def: A transposition is a permutation that just swaps two numbers.
$E_{g}: 123 \rightarrow 132 \quad 213 \quad 321$
Fact: Any permutation can be obtained by dong some number of transpositions.

Def: The sign of a permutation σ is $\operatorname{sign}(\sigma)=$

- Il if it can be obtained by doing an even number of transpositions.
- -1 if it can be obtained by doing an odd number of transpositions.

Eg: $1234 \rightarrow 3124:$

$$
1234 \rightarrow 3214 \longrightarrow 3124
$$

2 transpositions \Rightarrow sign is +1 .
Tho (Big, Formula): Lot A be an $n \times n$ matrix with (io) entry $a_{i j}$.

$$
\operatorname{det}(A)=\sum_{\text {peranantations }}^{\infty} \operatorname{sign}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n}(n)
$$

Eg: $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$
Six permutations: $123 \rightarrow$
123 sign $=1$ (0 transpositions)
$132 \quad \operatorname{sign}=-1 \quad$ (transposition)
$a_{11} a_{22} a_{33}$
$213 \quad$ sign $=-1 \quad$ (transposition)
231 sign $=1 \quad$ (2 transpositions)
321 sign $=-1 \quad$ (transposition)
$-a_{11} a_{23} a_{32}$
$-a_{12} a_{21} a_{33}$
$+a_{12} a_{23} a_{31}$
$-a_{13} a_{22} a_{31}$
312 sign $=1$ (2 transpositions)
$+a_{13} a_{21} a_{32}$

