Math 218D-1: Homework #9

due Wednesday, November 2, at 11:59pm

1. Compute

$$
\det \left[\begin{pmatrix} -3 & 3 & 2 \\ 3 & 0 & 0 \\ -9 & 18 & 7 \end{pmatrix} - \lambda I_3 \right]
$$

where *λ* is an unknown real number. Your answer will be a function of *λ*.

- **2. a)** Compute the determinants of the matrices in HW8#14 in two more ways: by expanding cofactors along a row, and by expanding cofactors along a column. You should get the same answer using all three methods!
	- **b)** Compute the determinants of the matrices in HW8#14(b) and (d) *again* using Sarrus' scheme.
	- **c)** For the matrix of HW8#14(c), sum the products of the forward diagonals and subtract the products of the backward diagonals, as in Sarrus' scheme. Did you get the determinant?
- **3.** Consider the matrix

$$
A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}.
$$

- **a)** Compute the cofactor matrix *C* of *A*.
- **b**) Compute AC^T . What is the relationship between C^T and A^{-1} ?
- **4.** Consider the $n \times n$ matrix F_n with 1's on the diagonal, 1's in the entries immediately below the diagonal, and −1's in the entries immediately above the diagonal:

$$
F_2 = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad F_3 = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \qquad F_4 = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \quad \cdots.
$$

 \mathcal{L}

- **a**) Show that $\det(F_2) = 2$ and $\det(F_3) = 3$.
- **b**) Expand in cofactors to show that $\det(F_n) = \det(F_{n-1}) + \det(F_{n-2})$.
- **c**) Compute $\det(F_4)$, $\det(F_5)$, $\det(F_6)$, $\det(F_7)$ using **b**).

This shows that det(*Fⁿ*) is the *n*th *[Fibonacci number](https://en.wikipedia.org/wiki/Fibonacci_number)*. (The sequence usually starts with $1, 1, 2, 3, \ldots$, so our $\det(F_n)$ is the usual $n + 1$ st Fibonacci number.)

- **5.** Let *A* be an $n \times n$ invertible matrix with integer (whole number) entries.
	- **a)** Explain why det(*A*) is an integer.
	- **b**) If det(*A*) = \pm 1, show that *A*⁻¹ has integer entries.
	- **c**) If A^{-1} has integer entries, show that $det(A) = \pm 1$.
- **6.** Let *V* be a subspace of **R** *n* . The matrix for *reflection over V* is

$$
R_V = I_n - 2P_{V^{\perp}},
$$

where $P_{V^{\perp}} = I_n - P_V$ is the projection matrix onto V^{\perp} .

a) Suppose that *V* is the line in the picture. Draw the vectors $R_V x_1, R_V x_2, R_V x_3$, and $R_V x_4$ as points in the plane.

- **b)** Show that any reflection matrix R_V is orthogonal. [**Hint:** Recall that $P_{V^{\perp}}^2 = P_{V^{\perp}} = P_{V^{\perp}}^T$.]
- **c)** Let *V* be the plane $x + y + z = 0$. Compute R_V and $\det(R_V)$.
- **d**) Let *V* be any plane in \mathbb{R}^3 . Prove that $\det(R_V) = -1$, as follows: choose an orthonormal basis $\{u_1, u_2\}$ for *V*, and let $u_3 = u_1 \times u_2$. Show that the matrix *A* with columns u_1, u_2, u_3 has determinant 1, and that $R_V A$ has determinant -1 .

Summary: a reflection over a plane in \mathbb{R}^3 has determinant -1 .

- **e**) Now compute $\det(R_L)$, where *L* is the *x*-axis in \mathbb{R}^3 .
- **7.** Use a cross product to find an implicit equation for the plane

$$
V = \text{Span}\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \right\}.
$$

Compare HW6#6(a).

- **8. a**) Let $v = (a, b)$ and $w = (c, d)$ be vectors in the plane, and let $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. By taking the cross product of $(a, b, 0)$ and $(c, d, 0)$, explain how the right-hand rule determines the sign of det(*A*).
	- **b)** Using the identity

$$
\left[\begin{pmatrix}a\\b\\c\end{pmatrix}\times\begin{pmatrix}d\\e\\f\end{pmatrix}\right]\cdot\begin{pmatrix}g\\h\\i\end{pmatrix}=\det\begin{pmatrix}a&d&g\\b&e&h\\c&f&i\end{pmatrix},
$$

explain how the right-hand rule determines the sign of a 3×3 determinant.

- **9.** Decide if each statement is true or false, and explain why.
	- **a)** The determinant of the cofactor matrix of *A* equals the determinant of *A*.
	- **b**) $u \times v = v \times u$.
	- **c**) If $u \times v = 0$ then $u \perp v$.
- **10.** For each matrix *A* and each vector *v*, decide if *v* is an eigenvector of *A*, and if so, find the eigenvalue *λ*.

a)
$$
\begin{pmatrix} -20 & 42 & 58 \\ 1 & -1 & -3 \\ -1 & 18 & 26 \end{pmatrix}
$$
, $\begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}$ b) $\begin{pmatrix} 2 & 3 & 0 \\ -5 & 4 & 2 \\ 3 & 3 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$
c) $\begin{pmatrix} -7 & 32 & -76 \\ 7 & -22 & 59 \\ 3 & -11 & 28 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$
e) $\begin{pmatrix} -3 & 2 & -3 \\ 3 & -3 & -2 \\ -4 & 2 & -3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

11. For each matrix *A* and each number *λ*, decide if *λ* is an eigenvalue of *A*; if so, find a basis for the *λ*-eigenspace of *A*.

a)
$$
\begin{pmatrix} -5 & -14 \\ 3 & 8 \end{pmatrix}
$$
, $\lambda = 1$ b) $\begin{pmatrix} -5 & -14 \\ 3 & 8 \end{pmatrix}$, $\lambda = -1$
c) $\begin{pmatrix} 2 & 3 & -15 \\ 5 & -7 & 31 \\ 2 & -3 & 13 \end{pmatrix}$ $\lambda = 3$ d) $\begin{pmatrix} 2 & 3 & -15 \\ 5 & -7 & 31 \\ 2 & -3 & 13 \end{pmatrix}$ $\lambda = 2$
e) $\begin{pmatrix} 3 & 1 & -2 \\ -2 & 0 & 4 \\ -1 & -1 & 4 \end{pmatrix}$ $\lambda = 2$ f) $\begin{pmatrix} 1 & 1 & -2 \\ -2 & -2 & 4 \\ -1 & -1 & 2 \end{pmatrix}$ $\lambda = 0$
g) $\begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{pmatrix}$ $\lambda = 7$ h) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\lambda = 0$

12. Suppose that *A* is an $n \times n$ matrix such that $Av = 2v$ for some $v \neq 0$. Let *C* be any invertible matrix. Consider the matrices

> **a**) A^{-1} A^{-1} **b**) $A + 2I_n$ **c**) A^3 **d**) CAC^{-1} .

Show that *v* is an eigenvector of **a)**–**c)** and that *C v* is as eigenvector of **d)**, and find the eigenvalues.

13. Here is a handy trick for computing eigenvectors of a 2×2 matrix.

Let $A = \left(\begin{smallmatrix} a & b \ c & d \end{smallmatrix} \right)$ be a 2 × 2 matrix with eigenvalue $\lambda.$ Explain why $\left(\begin{smallmatrix} -b & b \ c - d & d \end{smallmatrix} \right)$ $\binom{-b}{a-\lambda}$ and $\binom{d-\lambda}{-c}$ ^{l−λ}) are *λ*-eigenvectors of *A* if they are nonzero.

For which matrices *A* does this trick fail?

- **14. a**) Show that *A* and A^T have the same eigenvalues.
	- **b**) Give an example of a 2 \times 2 matrix *A* such that *A* and A^T do not share any eigenvectors.
	- **c)** A *stochastic matrix* is a matrix with nonnegative entries such that the entries in each column sum to 1. Explain why 1 is an eigenvalue of a stochastic matrix. [Hint: show that $(1, 1, \ldots, 1)$ is an eigenvector of A^T .]
- **15. a)** Find all eigenvalues of the matrix

$$
\begin{pmatrix} 1 & -1 & 2 & 3 & 4 \ 0 & 3 & -1 & -2 & -5 \ 0 & 0 & 1 & 2 & 4 \ 0 & 0 & 0 & 2 & 3 \ 0 & 0 & 0 & 0 & -1 \ \end{pmatrix}.
$$

b) Explain how to find the eigenvalues of any triangular matrix.

- **16.** Recall that an *orthogonal matrix* is a square matrix with orthonormal columns. Prove that any (real) eigenvalue of an orthogonal matrix *Q* is ±1.
- **17.** Suppose that *A* is a square matrix such that A^k is the zero matrix for some $k > 0$. Show that 0 is the only eigenvalue of *A*.
- **18.** Decide if each statement is true or false, and explain why.
	- **a)** If v, w are eigenvectors of a matrix *A*, then so is $v + w$.
	- **b**) An eigenvalue of $A + B$ is the sum of an eigenvalue of A and an eigenvalue of *B*.
	- **c)** An eigenvalue of *AB* is the product of an eigenvalue of *A* and an eigenvalue of *B*.
	- **d**) If $Ax = \lambda x$ for some vector *x*, then λ is an eigenvalue of *A*.
	- **e)** A matrix with eigenvalue 0 is not invertible.
	- **f)** The eigenvalues of *A* are equal to the eigenvalues of a row echelon form of *A*.