1. For each symmetric matrix \(S \), find an orthogonal matrix \(Q \) and a diagonal matrix \(D \) such that \(S = QDQ^T \).

\[
\begin{align*}
\text{a)} & \quad \begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix} & \quad \text{b)} & \quad \begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix} & \quad \text{c)} & \quad \begin{pmatrix} 14 & 2 \\ 2 & 11 \end{pmatrix} \\
\text{d)} & \quad \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix} & \quad \text{e)} & \quad \begin{pmatrix} 1 & -8 & 4 \\ -8 & 1 & 4 \\ 4 & 4 & 7 \end{pmatrix}
\end{align*}
\]

Solution.

\[
\begin{align*}
\text{a)} & \quad Q = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} & \quad D = \begin{pmatrix} 4 & 0 \\ 0 & -2 \end{pmatrix} \\
\text{b)} & \quad Q = \frac{1}{\sqrt{10}} \begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix} & \quad D = \begin{pmatrix} 0 & 0 \\ 0 & 10 \end{pmatrix} \\
\text{c)} & \quad Q = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} & \quad D = \begin{pmatrix} 15 & 0 \\ 0 & 10 \end{pmatrix} \\
\text{d)} & \quad Q = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} & \quad D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{pmatrix} \\
\text{e)} & \quad Q = \begin{pmatrix} -\sqrt{2}/2 & 1/3\sqrt{2} & -2/3 \\ 1/3\sqrt{2} & 1/3\sqrt{2} & -2/3 \\ 0 & 4/3\sqrt{2} & 1/3 \end{pmatrix} & \quad D = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & -9 \end{pmatrix}
\end{align*}
\]

2. For each matrix \(S \) of Problem 1, decide if \(S \) is positive-semidefinite, and if so, compute its positive-semidefinite square root \(\sqrt{S} = Q\sqrt{D}Q^T \). Verify that \((\sqrt{S})^2 = S\).

Remark: Since \(\sqrt{S} \) is also symmetric, we have \(S = \sqrt{S}^T \sqrt{S} \), so this is another way to factorize a positive-semidefinite matrix as \(A^T A \).

Solution.

a) This matrix is indefinite.

b) This matrix is positive-semidefinite, and

\[
\sqrt{S} = \frac{1}{10} \begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{10} \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix} = \frac{1}{\sqrt{10}} \begin{pmatrix} -3 & 1 \\ -3 & 9 \end{pmatrix}.
\]

c) This matrix is positive-definite, and

\[
\sqrt{S} = \frac{1}{5} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \sqrt{15} & 0 \\ 0 & \sqrt{10} \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 4\sqrt{3} + \sqrt{2} & 2\sqrt{3} - 2\sqrt{2} \\ 2\sqrt{3} - 2\sqrt{2} & \sqrt{3} + 4\sqrt{2} \end{pmatrix}.
\]
d) This matrix is positive-definite, and
\[
\sqrt{5} = \frac{1}{9} \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{6} & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}
\]
\[
= \frac{1}{9} \begin{pmatrix} \sqrt{3} + 4\sqrt{6} + 12 & -2\sqrt{3} - 2\sqrt{6} + 12 & 2\sqrt{3} - 4\sqrt{6} + 6 \\ -2\sqrt{3} - 2\sqrt{6} + 12 & 4\sqrt{3} + \sqrt{6} + 12 & -4\sqrt{3} + 2\sqrt{6} + 6 \\ 2\sqrt{3} - 4\sqrt{6} + 6 & -4\sqrt{3} + 2\sqrt{6} + 6 & 4\sqrt{3} + 4\sqrt{6} + 3 \end{pmatrix}
\]
e) This matrix is indefinite.

3. Consider the matrix
\[
S = \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}
\]
of Problem 1(d). Write \(S\) in the form \(\lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \lambda_3 u_3 u_3^T\) for numbers \(\lambda_1, \lambda_2, \lambda_3\) and orthonormal vectors \(u_1, u_2, u_3\).

Solution.
\[
S = 3u_1 u_1^T + 6u_2 u_2^T + 9u_3 u_3^T \quad \text{for} \quad u_1 = \frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \quad u_2 = \frac{1}{3} \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}, \quad u_3 = \frac{1}{3} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.
\]

4. Find all possible orthogonal diagonalizations
\[
\frac{1}{5} \begin{pmatrix} 41 & 12 \\ 12 & 34 \end{pmatrix} = QDQ^T.
\]

Solution.
The eigenvalues are \(\lambda_1 = 5\) and \(\lambda_2 = 10\) with eigenspaces spanned by \(w_1 = \frac{1}{5}(3, -2, -3)^T\) and \(w_2 = \frac{1}{5}(4, 3, 1)^T\), respectively. Each eigenspace contains exactly two unit vectors, so the possible diagonalizations are:

\[
Q = \frac{1}{5} \begin{pmatrix} \pm 3 & \pm 4 \\ \pm 4 & \pm 3 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix}
\]

(There are eight in total.)

5. Let \(S\) be a symmetric matrix such that \(S^k = 0\) for some \(k > 0\). Show that \(S = 0\).

[Hint: Use HW9#17.]

Solution.
If S is symmetric then it is diagonalizable. All eigenvalues are zero, so $S = QOQ^T = 0$.

6. Let S be a symmetric orthogonal 2×2 matrix.
 a) Show that $S = \pm I_2$ if it has only one eigenvalue.
 [Hint: See HW9#16.]
 b) Suppose that S has two eigenvalues. Show that S is the matrix for the reflection over a line L in \mathbb{R}^2. (Recall that the reflection over a line L is given by $R_L = I_2 - 2P_L$.)
 [Hint: Write S as $\lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T$, and use the projection formula to write I_2 and P_L in this form as well. What is L?]

Solution.
 a) The only possible eigenvalues of an orthogonal matrix are ± 1. If S has only one eigenvalue then it is diagonal: it is diagonalizable, so that eigenvalue has geometric multiplicity 2.
 b) We can write $S = u_1 u_1^T - u_2 u_2^T$, where u_1 spans L and u_2 spans L^T. On the other hand, $P_L = u_2 u_2^T$ and $I_2 = u_1 u_1^T + u_2 u_2^T$ by the projection formula, so $S = I_2 - 2P_L$.

7. a) Let S be a diagonalizable (over \mathbb{R}) $n \times n$ matrix with orthogonal eigenspaces: that is, eigenvectors with different eigenvalues are orthogonal. Prove that S is symmetric.
 [Hint: choose orthonormal bases for each eigenspace.]
 b) Let S be a matrix that can be written in the form
 \[S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \cdots + \lambda_n q_n q_n^T \]
 for some vectors q_1, q_2, \ldots, q_n. Prove that S is symmetric.
 c) Let V be a subspace of \mathbb{R}^n, and let P_V be the projection matrix onto V. Use a) or b) to prove that P_V is symmetric. (We proved this in class using the formula $P_V = A(A^T A)^{-1}A^T$.)

Solution.
 a) By Gram–Schmidt, we can find an orthonormal basis of each eigenspace; collecting these bases together, by mutual orthogonality we get an orthonormal eigenbasis $\{q_1, q_2, \ldots, q_n\}$. Making a matrix Q with these columns, we have $S = QDQ^T$ for a diagonal matrix D; taking transposes, we get $S^T = QD^T Q^T = QDQ^T = S$.
 b) Each matrix $q_i q_i^T$ is symmetric because $(q_i q_i^T)^T = q_i^T q_i^T = q_i q_i^T$, so S is a sum of symmetric matrices.
 c) The 1-eigenspace of P_V is V and the zero-eigenspace is V^\perp. These are orthogonal, and the geometric multiplicities sum to n.
8. For which matrices A is $S = A^T A$ positive-definite? If S is not positive-definite, find a vector x such that $x^T S x = 0$. In any case, do not compute S!

\[a) \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 0 & 3 \end{pmatrix} \quad b) \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix} \quad c) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}. \]

Solution.

a) This is positive-definite because A has full column rank.

b) This is not positive-definite. The vector $x = (-6, 3, 1)$ is in the null space, so $x^T A^T A x = 0$.

c) This is not positive-definite. The vector $x = (1, -2, 1)$ is in the null space, so $x^T A^T A x = 0$.

9. a) If S is positive-definite and C is invertible, show that $C S C^T$ is positive-definite.

b) If S and T are positive-definite, show that $S + T$ is positive-definite.

c) If S is positive-definite, show that S is invertible and that S^{-1} is positive-definite.

[**Hint:** For a) and b) use the positive-energy characterization of positive-definiteness; for c) use the positive-eigenvalue characterization.]

Solution.

a) Let x be a nonzero vector. Then

\[x^T C S C^T x = (C^T x)^T (C^T x), \]

which is positive because $C^T x \neq 0$.

b) Let x be a nonzero vector. Then

\[x^T (S + T) x = x^T S x + x^T T x, \]

which is positive because $x^T S x > 0$ and $x^T T x > 0$.

c) All eigenvalues of S are positive, as are their reciprocals, which are the eigenvalues of S^{-1}.

10. Let S be a positive-definite matrix.

a) Show that the diagonal entries of S are positive.

[**Hint:** compute $e_i^T S e_i$.]

b) Show that the diagonal entries of S are all greater than or equal to the smallest eigenvalue of S.

[**Hint:** if not, apply a) to $S - a I_n$ for a diagonal entry a that is smaller than all eigenvalues.]

Solution.
a) If s_{ij} is the (i, j)-entry of S, then $s_{ii} = e_i^T Se_i > 0$.

b) Suppose that S has a diagonal entry a that is smaller than the smallest eigenvalue λ. The eigenvalues of $S - aI_n$ have the form $\lambda - a$, where λ is an eigenvalue of S, hence are all positive numbers. Since $S - aI_n$ has positive eigenvalues, it is positive-definite, which is not possible by a) because it has a zero on the diagonal. It follows that no such diagonal entry exists.

11. Decide if each statement is true or false, and explain why. All matrices are real.

a) A symmetric matrix is diagonalizable.

b) If A is any matrix then A^TA is positive-semidefinite.

c) A symmetric matrix with positive determinant is positive-definite.

d) If $A = CDC^{-1}$ for a diagonal matrix D and a non-orthogonal invertible matrix C, then A is not symmetric.

e) A positive-definite matrix has the form A^TA for a matrix A with full column rank.

f) The only positive-definite projection matrix is the identity.

g) All eigenvalues of a positive-definite symmetric matrix are positive real numbers.

Solution.

a) True: this is part of the Spectral Theorem.

b) True.

c) False: you need all upper-left determinants to be positive.

d) False: you can always find an orthonormal eigenbasis, but you don’t have to use it to diagonalize a symmetric matrix.

e) True.

f) True.

g) True.
12. For each symmetric matrix S, decide if S is positive-definite. If so, find its LDL^T and Cholesky decompositions. Do not compute any eigenvalues!

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>$\begin{pmatrix} 1 & 1 \ 1 & 3 \end{pmatrix}$</td>
<td>b) $\begin{pmatrix} 1 & 2 & 0 \ 2 & 5 & -1 \ 0 & -1 & 3 \end{pmatrix}$</td>
</tr>
<tr>
<td>d)</td>
<td>$\begin{pmatrix} 1 & 1 & 2 & 1 \ 1 & 3 & 6 & 3 \ 2 & 6 & 14 & 8 \ 1 & 3 & 8 & 9 \end{pmatrix}$</td>
<td>e) $\begin{pmatrix} -1 & 2 & 3 & -2 \ 2 & -3 & -8 & 4 \ 3 & -8 & -4 & 6 \ -2 & 4 & 6 & -1 \end{pmatrix}$</td>
</tr>
</tbody>
</table>

Solution.

a) This is positive-definite, and $S = LDL^T = L_1L_1^T$ for

$L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad L_1 = \begin{pmatrix} 1 & 0 \\ 1 & \sqrt{2} \end{pmatrix}$.

b) This is positive-definite, and $S = LDL^T = L_1L_1^T$ for

$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad L_1 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -1 & \sqrt{2} \end{pmatrix}$.

c) This is positive-semidefinite but not positive-definite.

d) This is positive-definite, and $S = LDL^T = L_1L_1^T$ for

$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 & 4 \end{pmatrix}, \quad L_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & \sqrt{2} & 0 & 0 \\ 1 & 2\sqrt{2} & \sqrt{2} & 0 \\ 1 & \sqrt{2} & \sqrt{2} & 2 \end{pmatrix}$.

e) This is not positive-definite.

13. Consider the matrix

$S = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

Without multiplying the matrices, find:

a) The determinant of S.

b) The eigenvalues of S.

c) The eigenvectors of S.

d) A reason why S is symmetric positive-definite.

Solution.

This matrix has the form $S = QDQ^T$ for an orthogonal matrix Q.

a) The determinant is $3 \cdot 4 = 12$.

b) The eigenvalues are 3 and 4.
c) The eigenvectors are nonzero multiples of \((\cos \theta, \sin \theta)\) and \((-\sin \theta, \cos \theta)\).
d) The eigenvalues are positive.

14. a) For each symmetric matrix \(S\), compute the associated quadratic form \(q(x) = x^T S x\).

\[
\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 3 \\ 0 & -1 & 1 \\ 3 & 1 & 0 \end{pmatrix}
\]

b) Let \(A\) be a square matrix and let \(S = \frac{1}{2}(A + A^T)\). Show that \(S\) is symmetric and that \(x^T A x = x^T S x\). (This is why we only consider symmetric matrices when studying quadratic forms.)

Solution.
a) They are:

\[
\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} : \quad q(x_1, x_2) = x_1^2 + x_2^2 + 4x_1x_2 \\
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} : \quad q(x_1, x_2) = 2x_1x_2 \\
\begin{pmatrix} 1 & 0 & 3 \\ 0 & -1 & 1 \\ 3 & 1 & 0 \end{pmatrix} : \quad q(x_1, x_2, x_3) = x_1^2 - x_2^2 + 6x_1x_3 + 2x_2x_3
\]

b) We have \(S^T = \frac{1}{2}(A^T + A) = S\), so \(S\) is symmetric. The “matrix” \(x^T A^T x\) is just a number, so it is symmetric, and hence \(x^T A^T x = x^T S x\). Therefore,

\[
x^T \frac{1}{2} (A + A^T) x = \frac{1}{2} x^T A x + \frac{1}{2} x^T A^T x = x^T A x.
\]

15. For each quadratic form \(q(x_1, x_2)\), i) write \(q(x)\) in the form \(x^T S x\) for a symmetric matrix \(S\), ii) find coordinates \(y_1, y_2\) such that \(q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2\), and iii) find the maximum and minimum values of \(q(x_1, x_2)\) subject to the constraint \(x_1^2 + x_2^2 = 1\), and at which points \((x_1, x_2)\) these values are attained.

a) \(q(x_1, x_2) = 14x_1^2 + 4x_1x_2 + 11x_2^2\)

b) \(q(x_1, x_2) = \frac{1}{10}(21x_1^2 - 6x_1x_2 + 29x_2^2)\)

c) \(q(x_1, x_2) = x_1^2 - 6x_1x_2 + x_2^2\)

Solution.
a) We have \(q = x^T S x\) for \(S = \begin{pmatrix} 14 & 2 \\ 2 & 11 \end{pmatrix}\). This is the matrix of Problem 1(c); we found its orthogonal diagonalization to be \(S = QDQ^T\) for

\[
Q = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}, \quad D = \begin{pmatrix} 15 & 0 \\ 0 & 10 \end{pmatrix}.
\]
Taking \(x = Qy \), we have \(q(x) = 15y_1^2 + 10y_2^2 \). The minimum value is \(q(\pm 1/\sqrt{5}, \pm 2/\sqrt{5}) = 10 \) and the maximum value is \(q(\pm 2/\sqrt{5}, \pm 1/\sqrt{5}) = 15 \).

b) We have \(q = x^T S x \) for \(S = \begin{pmatrix} \frac{1}{10} & \frac{-21}{29} \\ \frac{-21}{29} & \frac{-3}{29} \end{pmatrix} \). This has eigenvalues 3 and 2 with unit eigenvectors \(w_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \) and \(w_2 = \frac{1}{\sqrt{10}} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \), respectively. Therefore, \(S = QDQ^T \) for
\[
Q = \frac{1}{\sqrt{10}} \begin{pmatrix} -1 & 3 \\ 3 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}.
\]
Taking \(x = Qy \), we have \(q(x) = 3y_1^2 + 2y_2^2 \). The minimum value is \(q(\pm 3/\sqrt{10}, \pm 1/\sqrt{10}) = 2 \) and the maximum value is \(q(\pm 1/\sqrt{10}, \pm 3/\sqrt{10}) = 3 \).

c) We have \(q = x^T S x \) for \(S = \begin{pmatrix} \frac{1}{3} & \frac{-3}{1} \\ \frac{-3}{1} & \frac{1}{3} \end{pmatrix} \). This is the matrix of Problem 1(a); we found its orthogonal diagonalization to be \(S = QDQ^T \) for
\[
Q = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 4 & 0 \\ 0 & -2 \end{pmatrix}.
\]
Taking \(x = Qy \), we have \(q(x) = 4y_1^2 - 2y_2^2 \). The maximum value is \(q(\pm 1/\sqrt{2}, \pm 1/\sqrt{2}) = 4 \) and the minimum value is \(q(\pm 1/\sqrt{2}, \pm 1/\sqrt{2}) = -2 \).

16. For the quadratic form
\[q(x_1, x_2, x_3) = 7x_1^2 + 6x_2^2 + 5x_3^2 + 4x_1x_2 + 4x_2x_3, \]
find coordinates \(y_1, y_2, y_3 \) such that \(q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 \), and find the maximum and minimum values of \(q(x_1, x_2, x_3) \) subject to the constraint \(x_1^2 + x_2^2 + x_3^2 = 1 \), along with the points \((x_1, x_2, x_3) \) at which these values are attained.

Solution.
We have \(q(x) = x^T S x \) for
\[
S = \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}.
\]
This is the matrix of Problem 1(d); we found its orthogonal diagonalization to be \(S = QDQ^T \) for
\[
Q = \frac{1}{3} \begin{pmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{pmatrix}, \quad D = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{pmatrix}
\]
(we have rearranged the eigenvalues to be in decreasing order). Taking \(x = Qy \), we have \(q(x) = 9y_1^2 + 6y_2^2 + 3y_3^2 \). The maximum value is \(q(\pm 2/3, \pm 2/3, \pm 1/3) = 9 \) and the minimum value is \(q(\pm 1/3, \mp 2/3, \pm 2/3) = 3 \).

17. Consider the quadratic form
\[q(x_1, x_2, x_3) = x_1^2 + x_2^2 + 7x_3^2 - 16x_1x_2 + 8x_1x_3 + 8x_2x_3. \]
Find all vectors \(x = (x_1, x_2, x_3) \) maximizing \(q(x) \) subject to \(||x|| = 1 \). (There are infinitely many!)
Solution.
We have \(q(x) = x^T S x \) for
\[
S = \begin{pmatrix}
1 & -8 & 4 \\
-8 & 1 & 4 \\
4 & 4 & 7
\end{pmatrix}.
\]
This is the matrix of Problem 1(e); we found its orthogonal diagonalization to be
\(S = QDQ^T \) for
\[
Q = \begin{pmatrix}
-1/\sqrt{2} & 1/3\sqrt{2} & -2/3 \\
1/\sqrt{2} & 1/3\sqrt{2} & -2/3 \\
0 & 4/3\sqrt{2} & 1/3
\end{pmatrix},
D = \begin{pmatrix}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & -9
\end{pmatrix}.
\]
The maximal value of \(q \) is therefore equal to 9; it is attained at any unit 9-eigenvector. Letting \(w_1 = \frac{1}{\sqrt{2}}(-1, 1, 0) \) and \(w_2 = \frac{1}{3\sqrt{2}}(1, 1, 4) \), the maximum is achieved at any vector of the form
\[
x = x_1 w_1 + x_2 w_2 \quad \text{for} \quad x_1^2 + x_2^2 = 1.
\]