Math 218D-1: Homework #1

due Wednesday, September 7, at 11:59pm

1. Consider the vectors

$$
u = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \quad v = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} \quad w = \begin{pmatrix} 8 \\ -6 \\ -2 \end{pmatrix}.
$$

- **a**) Compute $u + v + w$ and $u + 2v w$.
- **b**) Find numbers *x* and *y* such that $w = xu + yv$.
- **c)** Explain why every linear combination of *u*, *v*, *w* is also a linear combination of *u* and *v* only.
- **d)** The sum of the coordinates of any linear combination of *u*, *v*, *w* is equal to ?
- **e**) Find a vector in \mathbb{R}^3 that is *not* a linear combination of u, v, w .
- **2.** Find two *different* triples (*x*, *y*, *z*) such that

$$
x\begin{pmatrix}1\\2\end{pmatrix}+y\begin{pmatrix}1\\-2\end{pmatrix}+z\begin{pmatrix}2\\1\end{pmatrix}=\begin{pmatrix}4\\0\end{pmatrix}.
$$

How many such triples are there?

- **3.** Decide if each statement is true or false, and explain why.
	- **a**) The vector $\frac{1}{2}v$ is a linear combination of *v* and *w*.

$$
b) \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
$$

- **c**) If *v*, *w* are two vectors in \mathbb{R}^2 , then any other vector *b* in \mathbb{R}^2 is a linear combination of *v* and *w*.
- **4.** Suppose that *v* and *w* are *unit vectors*: that is, $v \cdot v = 1$ and $w \cdot w = 1$. Compute the following dot products (your answers will be actual numbers):

a) $v \cdot (-v)$ **b**) $(v+w) \cdot (v-w)$ **c**) $(v+2w) \cdot (v-2w)$.

5. Two vectors *v* and *w* are *orthogonal* if $v \cdot w = 0$, and they are *parallel* if one is a scalar multiple of the other. A *unit vector* is a vector *v* with $v \cdot v = 1$.

Decide if each statement is true or false, and explain why.

- **a**) If $u = (1, 1, 1)$ is orthogonal to *v* and to *w*, then *v* is parallel to *w*.
- **b**) If *u* is orthogonal to $v + w$ and to $v w$, then *u* is orthogonal to *v* and *w*.
- **c**) If *u* and *v* are orthogonal unit vectors then $(u v) \cdot (u v) = 2$.
- **d**) If $u \cdot u + v \cdot v = (u + v) \cdot (u + v)$, then *u* and *v* are orthogonal.
- **6.** Find nonzero vectors v and w that are orthogonal to $(1, 1, 1)$ and to each other.
- **7.** Compute the following matrix-vector products using *both* the by-row and by-column methods. If the product is not defined, explain why.

$$
\begin{pmatrix} 2 \ 5 \end{pmatrix} \begin{pmatrix} 1 \ -3 \ -1 \end{pmatrix} \quad \begin{pmatrix} 1 & -2 \ 0 & -1 \ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ -2 \end{pmatrix} \quad \begin{pmatrix} 7 & 2 & 4 \ 3 & -3 & 1 \end{pmatrix} \begin{pmatrix} 1 \ -1 \ -1 \end{pmatrix}
$$

$$
\begin{pmatrix} 7 & 4 \ -2 & 2 \ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 \ -2 \end{pmatrix} \quad (2 \ 6 \ -1) \begin{pmatrix} 5 \ -1 \ 0 \end{pmatrix} \quad \begin{pmatrix} 5 \ -1 \ 0 \end{pmatrix} (2 \ 6 \ -1)
$$

8. Suppose that $u = (x, y, z)$ and $v = (a, b, c)$ are vectors satisfying $2u + 3v = 0$. Find a nonzero vector w in \mathbb{R}^2 such that

$$
\begin{pmatrix} x & a \\ y & b \\ z & c \end{pmatrix} w = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
$$

9. Consider the matrices

$$
A = \begin{pmatrix} 2 & 1 & -1 \\ 4 & -4 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 3 & 2 \\ 1 & -1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}
$$

$$
D = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \qquad E = \begin{pmatrix} -3 & 5 \end{pmatrix}.
$$

Compute the following expressions. If the result is not defined, explain why.

a)
$$
-3A
$$
 b) $B-3A$ **c)** AC **d)** B^2
e) $A+2B$ **f)** $C-E$ **g)** EB **h)** D^2

10. Compute the product

$$
\begin{pmatrix}\n1 & 2 \\
2 & -1\n\end{pmatrix}\n\begin{pmatrix}\n2 & 1 & -1 \\
4 & -1 & 2\n\end{pmatrix}
$$

in three ways:

- **a)** Using the column form and the "by columns" method on each column.
- **b)** Using the column form and the "by rows" method on each column.
- **c)** Using the outer product form.
- **11.** Consider the matrices

$$
A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ -1 & h \end{pmatrix}.
$$

What value(s) of h , if any, will make $AB = BA$?

12. Consider the matrices

$$
A = \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} -4 & -8 \\ 5 & 8 \end{pmatrix} \qquad C = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}.
$$

Verify that $AC = BC$ and yet $A \neq B$.

13. For the following matrices *A* and *B*, compute $AB, A^T, B^T, B^T A^T$, and $(AB)^T$. Which of these matrices are equal and why? Why can't you compute A^TB^T ?

$$
A = \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & -1 \\ 4 & -1 & 2 \end{pmatrix}.
$$

14. Decide if each statement is true or false, and explain why.

- **a)** If *A* and *B* are symmetric of the same size, then *AB* is symmetric.
- **b**) If *A* is symmetric, then A^3 is symmetric.
- **c**) If *A* is any matrix, then A^TA is symmetric.
- **15.** In the table below, a linear system is expressed as a system of equations, as a matrix equation, or as an augmented matrix. Fill in the blank entries.

System of Equations Matrix Equation Augmented Matrix $3x_1 + 2x_2 + 4x_3 = 9$ $-x_1$ + $4x_3$ = 2 $\begin{pmatrix} 3 & -5 \\ 1 & 2 & -5 \end{pmatrix}$ 2 4 $\begin{pmatrix} 3 & -5 \\ 2 & 4 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ *x*2 λ = (1) 1 2 ! $\sqrt{ }$ \mathbf{I} \mathbf{I} $1 \t0 \t1 \t1 \t2$ 0 3 -1 -2 4 $1 -3 -4 -3 2$ 6 $5 -1 -8 1$ λ \mathbf{I} $\overline{1}$

16. Which of the following matrices are not in row echelon form? Why not?

$$
\begin{pmatrix}\n1 & 3 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 4\n\end{pmatrix}\n\begin{pmatrix}\n3 & 0 & 1 & 0 \\
1 & 0 & 2 & 3 \\
0 & 0 & 0 & 4\n\end{pmatrix}\n\begin{pmatrix}\n2 & 3 & 4 & 1 \\
0 & 9 & 3 & 1 \\
0 & 0 & 0 & 1\n\end{pmatrix}\n\begin{pmatrix}\n2 & 3 & 4 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
(1 \ 0 \ 2 \ 4)\n\begin{pmatrix}\n1 \\
0 \\
4\n\end{pmatrix}\n\begin{pmatrix}\n1 \\
0 \\
2 \\
4\n\end{pmatrix}\n\begin{pmatrix}\n0 \\
1 \\
0 \\
0\n\end{pmatrix}\n\begin{pmatrix}\n2 & 1 \\
0 & 4 \\
0 & 0\n\end{pmatrix}
$$

17. Consider the following system of equations:

$$
x_1 - 2x_2 + x_3 = 1
$$

-2x₁ + 5x₂ + 5x₃ = 2
3x₁ - 7x₂ - 7x₃ = 2.

- **a**) Use row operations to eliminate x_1 from all but the first equation.
- **b)** Use row operations to modify the system so that x_2 only appears in the first and second equations (and x_1 still only appears in the first).
- **c**) Solve for x_3 , then for x_2 , then for x_1 . What is the solution?
- **18.** The matrix below can be transformed into row echelon form using exactly two row operations. What are they?

$$
\begin{pmatrix}\n2 & 4 & -2 & 4 \\
-1 & -2 & 1 & -2 \\
0 & 2 & 0 & 3\n\end{pmatrix}
$$

19. Find values of *a* and *b* such that the following system has **a)** zero, **b)** exactly one, and **c)** infinitely many solutions.

$$
2x + ay = 4
$$

$$
x - y = b
$$

- **20.** Give examples of matrices *A* in *row echelon form* for which the number of solutions of $Ax = b$ is:
	- **a)** 0 or 1, depending on *b*
	- **b**) ∞ for every *b*
	- **c**) 0 or ∞ , depending on *b*
	- **d)** 1 for every *b*.

Is there a square matrix satisfying **b)**? Why or why not?