MATH 218D-1 MIDTERM EXAMINATION 3

Name		Duke NetID	
------	--	------------	--

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **four-function calculator** for doing arithmetic, but you should not need one. You may bring a 3 × 5-**inch note card** covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

Problem 1.

[15 points]

a) For each of the following quadratic forms q_i , find the symmetric matrix S_i such that $q_i(x) = x^T S_i x$.

$$q_{1}(x_{1}, x_{2}, x_{3}) = 2x_{1}^{2} + x_{2}^{2} + 18x_{3}^{2} - 4x_{1}x_{2} + 12x_{1}x_{3} - 10x_{2}x_{3}$$

$$q_{2}(x_{1}, x_{2}, x_{3}) = x_{1}^{2} + 5x_{3}^{2} + 6x_{1}x_{2} + 18x_{1}x_{3} + 14x_{2}x_{3}$$

$$q_{3}(x_{1}, x_{2}, x_{3}) = 2x_{1}^{2} + 9x_{2}^{2} + 10x_{3}^{2} + 8x_{1}x_{2} - 8x_{1}x_{3} - 14x_{2}x_{3}$$

$$S_{1} = \begin{pmatrix} 2 & -2 & 6 \\ -2 & 1 & -5 \\ 6 & -5 & 18 \end{pmatrix}$$

$$S_{2} = \begin{pmatrix} 1 & 3 & 9 \\ 3 & 0 & 7 \\ 9 & 7 & 5 \end{pmatrix}$$

$$S_{3} = \begin{pmatrix} 2 & 4 & -4 \\ 4 & 9 & -7 \\ -4 & -7 & 10 \end{pmatrix}$$

- **b)** One of the quadratic forms in **a)** is positive-definite. Which is it? q_3
- c) Find the *LDL^T* decomposition of the symmetric matrix associated to the positive-definite quadratic form you identified in **b**).

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -2 & 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Problem 2.

[15 points]

Consider the matrix

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \\ 2 & -2 \end{pmatrix}.$$

a) Compute the symmetric matrix $S = A^T A$.

- $S = \begin{pmatrix} 9 & -8 \\ -8 & 9 \end{pmatrix}$
- **b)** Find an orthogonal matrix Q and a diagonal matrix D such that $S = QDQ^{T}$.

$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 17 & 0\\ 0 & 1 \end{pmatrix}$$

c) What is the minimum value of ||Ax|| subject to ||x|| = 1? At which vectors is this minimum achieved?

minimum value = 1 achieved at
$$x = \pm \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Problem 3.

[20 points]

Consider the difference equation $v_{k+1} = Av_k$ where

$$A = \begin{pmatrix} 0.3 & 0.2 & 0.3 \\ 0.4 & 0.2 & 0.4 \\ 0.3 & 0.6 & 0.3 \end{pmatrix}.$$

a) Compute the characteristic polynomial $p(\lambda)$ of *A*.

$$p(\lambda) = -\lambda^3 + .8\lambda^2 + .2\lambda$$

b) Find the eigenvalues of *A*.

[**Hint:** one of the eigenvalues is zero, so you can factor $p(\lambda)$ using the quadratic formula.]

eigenvalues = 0, -.2, 1

c) Find an eigenbasis $\{w_1, w_2, w_3\}$ for *A*.

$$w_1 = \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}$$
 $w_2 = \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$ $w_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

d) If $v_0 = x_1w_1 + x_2w_2 + x_3w_3$ then v_k approaches x_1w_1 as $k \to \infty$.

Problem 4.

A certain 2 × 2 matrix *A* has eigenvectors *v* and *w*, pictured below, with corresponding eigenvalues 3/2 and -1/2, respectively.

a) Draw and label *Av* and *Aw* below.

b) Draw and label *Ax* and *Ay* below.

Problem 5.

a) Let *A* be a matrix that is diagonalizable over the complex numbers. Consider the initial value problem u' = Au, $u(0) = u_0 \in \mathbb{R}^n$. What must be true about the eigenvalues of *A* to guarantee that $u(t) \to 0$ as $t \to \infty$ for every initial value u_0 ?

The real part of each eigenvalue must be negative.

b) Let *V* be a plane in \mathbb{R}^3 . There exists an invertible matrix *C* such that $P_V = CDC^{-1}$, where *D* is the diagonal matrix

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(There is more than one correct answer.)

c) If *A* is a 2 × 2 real matrix with complex eigenvalue a + bi ($b \neq 0$) then

 $\det(A) = a^2 + b^2.$

d) Suppose that *A* is diagonalizable. Explain why A^3 is diagonalizable. If $A = CDC^{-1}$ then $A^3 = CD^3C^{-1}$, and D^3 is still diagonal.

e) Let *A* be the diagonal matrix $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Find two *different* invertible matrices $C_1 \neq C_2$ and *different* diagonal matrices $D_1 \neq D_2$ such that

$$C_1 D_1 C_1^{-1} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = C_2 D_2 C_2^{-1}.$$
$$C_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad D_1 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
$$C_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad D_2 = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

Problem 6.

Give examples of matrices with each of the following properties. If no such matrix exists, explain why. *All matrices in this problem have real entries*.

a) A 2×2 matrix that is neither diagonalizable nor invertible.

$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

b) A 3×3 matrix with no real eigenvalues.

No such matrix exists: any degree-3 real polynomial has a real root.

c) A matrix having eigenvalue 3 with algebraic multiplicity 1 and geometric multiplicity 2.

No such matrix exists: this violates the AM≥GM theorem.

d) A 2 × 2 symmetric matrix that does not have a Cholesky decomposition. Any non-positive-definite diagonal matrix is an example.

e) A 2 × 2 symmetric matrix that does not have an orthogonal diagonalization QDQ^T.
 No such matrix exists by the spectral theorem.