Please read all instructions carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the printed pages (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a four-function calculator for doing arithmetic, but you should not need one. All other materials and aids are strictly prohibited.
- For full credit you must show your work so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without notes or distractions.
Problem 1. [20 points]

Consider the matrix

\[
A = \begin{pmatrix}
0 & 2 & -2 & -2 \\
2 & 0 & 8 & 0 \\
-3 & -1 & -3 & 6 \\
6 & 0 & 12 & -6
\end{pmatrix}.
\]

a) Perform Gaussian elimination with maximal partial pivoting to obtain a \(PA = LU \) decomposition of \(A \). You should end up with

\[
U = \begin{pmatrix}
6 & 0 & 12 & -6 \\
0 & 2 & -2 & -2 \\
0 & 0 & 4 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

Please write the row operations you performed. (You can continue your work on the back of this sheet.)

\[
L = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1/3 & 0 & 1 & 0 \\
-1/2 & -1/2 & 1/2 & 1
\end{pmatrix}, \quad P = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

b) Briefly explain the reason one might want to always choose the largest pivot in absolute value.

Maximal partial pivoting reduces rounding errors when implemented on a computer.
Problem 2. [20 points]

Consider the matrix
\[
A = \begin{pmatrix}
1 & 2 & -1 \\
-1 & -3 & 4 \\
-2 & -6 & 9
\end{pmatrix}.
\]

a) Compute \(A^{-1}\). Please write the row operations you performed.
\[
A^{-1} = \begin{pmatrix}
3 & 12 & -5 \\
-1 & -7 & 3 \\
0 & -2 & 1
\end{pmatrix}
\]

b) Express \(A^{-1}\) as a product of elementary matrices. (Your answer will be a product of matrices with numbers in them, as opposed to row operations.)
\[
A^{-1} = \begin{pmatrix}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

c) Solve \(Ax = b\), where \(b = (b_1, b_2, b_3)\) is an unknown vector. (Your answer will be a formula in \(b_1, b_2, b_3\).)
\[
x = \begin{pmatrix}
3b_1 + 12b_2 - 5b_3 \\
-b_1 - 7b_2 + 3b_3 \\
-2b_2 + b_3
\end{pmatrix}
\]
Problem 3. [20 points]

Consider the system of equations
\[
\begin{align*}
x_1 + 2x_2 - x_3 - x_4 &= 2 \\
x_2 + x_3 + 2x_4 &= 1.
\end{align*}
\]

a) Express the solution set as a translate of a span:
\[
\text{solution set} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \text{Span} \left\{ \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} \right\}
\]

b) The solution set is a (circle one) \(\text{point} \), \(\text{line} \), \(\text{plane} \) in (fill in the blank) \(\mathbb{R}^4 \).

c) The solution set of \(Ax = 0 \) has dimension 2.

d) Describe \(\text{Span}\{(-1)^1, (2)^1, (-1)^1, (2)^1\} \) geometrically:
\[
\text{it is a (circle one) } \begin{pmatrix} \text{point} \\ \text{line} \\ \text{plane} \end{pmatrix} \text{ in (fill in the blank) } \mathbb{R}^2.
\]

e) Find numbers \(b_1, b_2 \) making the system inconsistent. If no such numbers exist, explain why.

No such numbers exist. The columns of the coefficient matrix of this system span all of \(\mathbb{R}^2 \).
Problem 4. [12 points]

Give examples of 2×2 matrices A, B, C with ranks 0, 1, and 2, respectively. Draw pictures of the solution set of $Ax = 0$ and the span of the columns of A, and likewise for B and C. (Recall that the rank of a matrix is the number of pivots.) Be precise!

a) Rank 0: $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

b) Rank 1: $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

c) Rank 2: $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(There are many possible answers for B and C, although the pictures will be the same for any choice of C.)

Problem 5. [10 points]

A certain 2×2 matrix A has columns v and w, pictured below. Solve the equations $Ax_1 = b_1$ and $Ax_2 = b_2$, where b_1 and b_2 are the vectors in the picture.

$x_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

$x_2 = \begin{pmatrix} -3/2 \\ -2 \end{pmatrix}$
Problem 6.

Short-answer questions: you do not need to justify your answers.

a) Suppose that A is a 4×2 matrix such that the solution set of $A(x, y) = 0$ is the line $y = x$. Let b be a nonzero vector in \mathbb{R}^4. Which of the following are definitely not the solution set of $Ax = b$? (Circle all that apply.)

- The line $y = x$.
- The y-axis.
- The line $y = x + 1$.
- The point $(1, 2)$.
- The empty set.

b) Consider the following plane in \mathbb{R}^3:

$$P = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Find two other vectors that span P. Your answer cannot contain a scalar multiple of $(1, 0, -1)$ or $(1, -1, 0)$.

$$P = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}.$$

(Any noncollinear vectors whose coordinates sum to zero will work.)

c) Find three vectors $u, v, w \in \mathbb{R}^3$ such that $\text{Span}\{u, v, w\}$ is a plane, but such that $w \notin \text{Span}\{u, v\}$.

$$u = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad w = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

(The vectors u and v must be collinear.)

d) A nonzero 2×3 matrix A has the property that $Ax = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is inconsistent. The span of the columns of A is a

- point
- line
- plane
- space.