1. **Projection onto a line**
 For each of the following,
 (1) project the vector b onto the line $V = \text{Span}\{v\}$;
 (2) draw the three vectors $b, b_V, b_{V\perp}$.

 a) $b = (1, 1), \ v = (1, 0)$

 b) $b = (0, 2), \ v = (1, 1)$

 c) $b = (1, 2, 3), \ v = (1, 1, -1)$.

2. **Planes and normal vectors**
 The subspace $V = \text{Span}\{(1, 1, 2), (1, 3, 1)\}$ of \mathbb{R}^3 is a plane.

 a) Make the vectors $(1, 1, 2), (1, 3, 1)$ into the rows of a 2×3 matrix A - this means that $\text{Row}(A) = V$. Find a basis for $\text{Nul}(A)$. Since

 \[V^\perp = \text{Row}(A)^\perp = \text{Nul}(A), \]

 you have found a basis $v = (a, b, c)$ for the line V^\perp.

 In other words, you have found a basis for V^\perp by solving the two orthogonality equations
 \[
 (a, b, c) \cdot (1, 1, 2) = a + b + 2c = 0, \\
 (a, b, c) \cdot (1, 3, 1) = a + 3b + c = 0.
 \]

 b) Confirm that V is the plane \{$(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0$\}, by showing that both $(1, 1, 2)$ and $(1, 3, 1)$ solve this equation. *The coefficients of a plane’s equation make a normal vector for the plane.*

 c) Find the orthogonal decomposition $b = b_V + b_{V\perp}$ of the vector $b = (1, 1, 1)$ with respect to the plane V and the orthogonal line V^\perp.

 Hint: It is easier to compute $b_{V\perp}$, as it is the projection of b onto the line V^\perp spanned by the vector $v = (a, b, c)$.
3. Projection onto a plane

Consider the plane

\[V = \text{Span}\{(1, 1, 1, 1), (1, 2, 3, 4)\} \]

in \(\mathbb{R}^4 \). We will find the orthogonal projection of \(b = (1, -1, -3, -5) \) onto \(V \). This is a vector \(b_V \in \mathbb{R}^4 \) so that \(b_V \in V \) and \(b_{V^\perp} = b - b_V \in V^\perp \).

Since \(b_V \) is in \(V \), it must equal

\[b_V = \hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4) \]

for some scalars \(\hat{x}_1 \) and \(\hat{x}_2 \). **We will compute the orthogonal projection by solving for these scalars.**

The vector \(b_{V^\perp} \) is orthogonal to every vector in \(V \), in particular it is orthogonal to both \((1, 1, 1, 1) \) and \((1, 2, 3, 4) \). We get two equations:

\[
(1, 1, 1, 1) \cdot b_{V^\perp} = 0, \\
(1, 2, 3, 4) \cdot b_{V^\perp} = 0.
\]

Expanding \(b_{V^\perp} = b - b_V = (1, -1, -3, -5) - (\hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4)) \), we can rewrite these two equations as

\[
(1, 1, 1, 1) \cdot (\hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4)) = (1, 1, 1, 1) \cdot (1, -1, -3, -5), \\
(1, 2, 3, 4) \cdot (\hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4)) = (1, 2, 3, 4) \cdot (1, -1, -3, -5).
\]

a) By computing the dot-products, convert this into two linear equations in the two unknowns \(\hat{x}_1 \) and \(\hat{x}_2 \).

b) Solve for \(\hat{x}_1 \) and \(\hat{x}_2 \), and compute the orthogonal projection

\[b_V = \hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4). \]

c) Confirm that the vector \(b_{V^\perp} = b - b_V \) is orthogonal to \(V \) by checking that

\[b_{V^\perp} \cdot (1, 1, 1, 1) = 0 \text{ and } b_{V^\perp} \cdot (1, 2, 3, 4) = 0. \]

d) Write down a matrix \(A \) whose column are the two vectors which span \(V \), and compute \(A^T A \), the “matrix of dot products”. Compute the vector \(A^T b \). Explain where the matrix equation \(A^T A \tilde{x} = A^T b \) (the **normal equation**) appears in **a)**-**b)**, and also where the product \(b_V = A\tilde{x} \) appears.

e) Compute the projection matrix \(P = A(A^T A)^{-1}A^T \) for the subspace \(V \) – this is the matrix which, when multiplied with \(b \), produces the projection \(b_V \): \(Pb = b_V \).

We’ll discuss projection matrices in next week’s lectures.

f) Compute the vectors \((I_4 - P) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \) and \((I_4 - P) \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \). Explain why these two vectors give a basis for the plane \(V^\perp \).
g) Use your answer to f) to describe the plane V via two implicit equations:

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 = 0 \text{ and } c'_1 x_1 + c'_2 x_2 + c'_3 x_3 + c'_4 x_4 = 0\}.$$

In other words, what coefficient vectors (c_1, c_2, c_3, c_4) and (c'_1, c'_2, c'_3, c'_4) can we use to describe V, and why? Confirm that every vector in V satisfies these equations by checking that both $(1, 1, 1, 1)$ and $(1, 2, 3, 4)$ do.

4. **Projection matrices for lines**
For each of the following lines L, compute the projection matrix P_L.

- a) $L = \text{Span}\{(1, 1)\}$,
- b) $L = \text{Span}\{(1, 2, 3)\}$,
- c) $L = \{(x, y, z) \in \mathbb{R}^3 : 2x + y + z = 0\}^\perp$.

5. **Projection matrices for planes**
Consider the plane

$$V = \text{Span}\{(1, 1, 1, 1), (1, 2, 3, 4)\}$$

in \mathbb{R}^4.

- a) Compute the projection matrix P_v for the subspace V – this is the matrix which, when multiplied with a vector b, produces the projection b_v:

$$P_v b = b_v.$$

(Feel free to use a computer to help with the matrix multiplications in the formula $P_v = A(A^T A)^{-1} A^T$ if you are finding it tedious.)

- b) Compute the vectors $(I_4 - P_v) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ and $(I_4 - P_v) \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. Explain why these two vectors give a basis for the plane V^\perp.

- c) Use your answer to b) to describe the plane V via two implicit equations:

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 = 0 \text{ and } c'_1 x_1 + c'_2 x_2 + c'_3 x_3 + c'_4 x_4 = 0\}.$$

In other words, what coefficient vectors (c_1, c_2, c_3, c_4) and (c'_1, c'_2, c'_3, c'_4) can we use to describe V, and why? Confirm that every vector in V satisfies these equations by checking that both $(1, 1, 1, 1)$ and $(1, 2, 3, 4)$ do.
6. Some mistakes to avoid

A false “fact”: every projection matrix \(P = A(A^T A)^{-1} A^T \) equals the identity matrix \(I \).

A false “proof”:
\[
P = A(A^T A)^{-1} A^T = A A^{-1} (A^T)^{-1} A^T = (A A^{-1})(A^T)^{-1} A^T = I \cdot I = I.
\]

a) What is wrong with this proof?

b) In what case would this proof be correct?

Consider the subspace \(V = \text{Span}\{(1, 1, 1, -1), (2, 1, 1, 2), (3, 2, 2, 1)\} \) in \(\mathbb{R}^4 \). \(V \) is the column space of the matrix
\[
A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \\ -1 & 2 & 1 \end{pmatrix}.
\]

c) It would be incorrect to say that \(P = A(A^T A)^{-1} A^T \) is the projection matrix for \(V \). Why?

Hint: Try computing \(P \) - what goes wrong?

d) Find a matrix \(B \) so that \(P = B(B^T B)^{-1} B^T \) is the projection matrix for \(V \) - you do not need to compute \(B \).