Math 218D Problem Session
Week 2

1. Row Echelon Form
 a) \[
 \begin{pmatrix}
 1 & 2 & \mid & 1 \\
 0 & 3 & \mid & 2 \\
 \end{pmatrix}
 \]
 In REF, pivots are 1 and 3
 b) \[
 \begin{align*}
 5x - y &= 1 \\
 0x + 0y &= 6 \\
 0x + 0y &= 0
 \end{align*}
 \]
 In REF, pivots are 5 and 6
 c) \[
 \begin{pmatrix}
 2 & 1 & -1 & \mid & 1 \\
 0 & 3 & 1 & \mid & 2 \\
 2 & 0 & 0 & \mid & 1 \\
 \end{pmatrix}
 \]
 Not in REF
 d) \[
 \begin{align*}
 2x + y &= 3 \\
 y &= 5
 \end{align*}
 \]
 In REF, pivots are 2 and 1
 e) \[
 \begin{align*}
 3x + 2y + z &= 0 \\
 0x + 0y + 0z &= 0 \\
 -x - 2y + 4z &= 1
 \end{align*}
 \]
 Not in REF
 f) \[
 \begin{align*}
 5x + 5y &= 5 \\
 x + y &= 1
 \end{align*}
 \]
 Not in REF
2. Two Equations and Two Unknowns

 a)

 b) The linear system is
 \[
 \begin{align*}
 x - y &= 2 \\
 2x - 4y &= -4.
 \end{align*}
 \]
 Subtract \(2 \cdot R_1\) from \(R_2\) to obtain:
 \[
 \begin{align*}
 x - y &= 2 \\
 -2y &= -8.
 \end{align*}
 \]

 c) Divide the second row by 2 to obtain:
 \[
 \begin{align*}
 x - y &= 2 \\
 y &= 4.
 \end{align*}
 \]

 d) Add the second row to the first row to obtain:
 \[
 \begin{align*}
 x &= 6 \\
 y &= 4.
 \end{align*}
 \]

 This is the solution.

 e) \(6 - 4 = 2, \ 2 \cdot 6 - 4 \cdot 4 = -5\).

 f) The system first becomes in REF after the 1st row operation. The pivots are 1 and \(-2\).
3. Three Equations Three Unknowns

a) \(A = \begin{pmatrix} 1 & -3 & 1 \\ 2 & -8 & 8 \\ -6 & 3 & -15 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ -2 \\ 9 \end{pmatrix}. \)

b) The augmented matrix is
\[
\begin{pmatrix} 1 & -3 & 1 & 4 \\ 2 & -8 & 8 & -2 \\ -6 & 3 & -15 & 9 \end{pmatrix}.
\]

c) First, replace \(R_2 \) by \(R_2 - 2R_1 \) (\(R_2 += -2R_1 \)).
\[
\begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & -2 & 6 & -10 \\ -6 & 3 & -15 & 9 \end{pmatrix}.
\]

Then \(R_3 += 6R_1 \):
\[
\begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & -2 & 6 & -10 \\ 0 & -15 & -9 & 33 \end{pmatrix}.
\]

Now, you can do row scaling here, although you don't need to. Let's do it now to simplify our rows: \(R_2 \times= -(1/2) \) and \(R_3 \times= -(1/3) \) (combining two elementary operations at once):
\[
\begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & 1 & -3 & 5 \\ 0 & 5 & 3 & -11 \end{pmatrix}.
\]

We do one more row addition, replacing \(R_2 \) with \(R_2 - 5R_1 \) (\(R_2 -= 5R_1 \)):
\[
\begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & 1 & -3 & 5 \\ 0 & 0 & 18 & -36 \end{pmatrix}.
\]

Do one more row scaling, replacing \(R_3 \) with \(\frac{1}{18}R_3 \) (\(R_3 \times= 1/18 \)):
\[
\begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & 1 & -3 & 5 \\ 0 & 0 & 1 & -2 \end{pmatrix}.
\]

d) I used 6 elementary row operations, but the row scalings could have been avoided, giving you as few as 3.

e) The system of equations is now
\[
\begin{align*}
x_1 - 3x_2 + x_3 &= 4 \\
x_2 - 3x_3 &= 5 \\
x_3 &= -2
\end{align*}
\]
Substituting $x_3 = -2$, we obtain the system
\[
\begin{align*}
x_1 - 3x_2 &= 6 \\
x_2 &= -1 \\
x_3 &= -2
\end{align*}
\]
Substituting $x_2 = -1$, we obtain the system
\[
\begin{align*}
x_1 &= 3 \\
x_2 &= -1 , \\
x_3 &= -2
\end{align*}
\]
which is the solution.

\[f) \text{ Check } \begin{pmatrix} 1 & -3 & 1 \\ 2 & -8 & 8 \\ -6 & 3 & -15 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 9 \end{pmatrix}.\]

4. **Another One—What’s Different?**

Consider the system of three linear equations
\[
\begin{align*}
x_1 - 2x_2 + x_3 &= -2 \\
2x_1 - 4x_2 + 8x_3 &= 2 \\
x_1 - 3x_2 - x_3 &= 1.
\end{align*}
\]

a) The linear system is
\[
\begin{align*}
x_1 - 2x_2 + x_3 &= -2 \\
2x_1 - 4x_2 + 8x_3 &= 2 \\
x_1 - 3x_2 - x_3 &= 1.
\end{align*}
\]
By doing two row subtraction operations ($R_2 \leftarrow 2R_1$ and $R_3 \leftarrow R_1$), we obtain
\[
\begin{align*}
x_1 - 2x_2 + x_3 &= -2 \\
6x_3 &= 6 \\
-x_2 - 2x_3 &= 3.
\end{align*}
\]

b) We swap rows 1 and 2 to obtain
\[
\begin{align*}
x_1 - 2x_2 + x_3 &= -2 \\
-x_2 - 2x_3 &= 3 \\
6x_3 &= 6.
\end{align*}
\]

c) Dividing row 3 by 6 gives $x_3 = 1$, which we substitute into the first two equations:
\[
\begin{align*}
x_1 - 2x_2 &= -3 \\
-x_2 &= 5 \\
x_3 &= 1.
\end{align*}
\]
Dividing row 2 by -1 gives $x_2 = -5$, which we substitute into the 1st equation:
\[
\begin{align*}
x_1 &= -13 \\
x_2 &= -5 \\
x_3 &= 1.
\end{align*}
\]
This is the solution.
5. Traffic Jam

a) We start with

\[
120 + w = 250 + x \\
120 + x = 70 + y \\
390 + y = 250 + z \\
115 + z = 175 + w
\]

or

\[
x - w = -130 \\
-x + y = 50 \\
-y + z = 140 \\
-z + w = -60.
\]

b) Eliminating \(x \) from the second equation gives

\[
x - w = -130 \\
y - w = -80 \\
-y + z = 140 \\
-z + w = -60.
\]

c) Eliminating \(y \) from the third equation gives

\[
x - w = -130 \\
y - w = -80 \\
z - w = 60 \\
-z + w = -60.
\]

d) Eliminating \(z \) from the fourth equation gives

\[
x - w = -130 \\
y - w = -80 \\
z - w = 60 \\
0 + 0 = 0.
\]

e) We can't just use substitution, as our final equation is not of the form \(w = (?) \).

The number of cars on roads \(x, y, \) and \(z \) all depend on how many cars are on \(w \).

f) The system has infinitely many solutions. There can be as many cars as you want, travelling in a circle around the town.

g) The augmented matrix is

\[
\begin{pmatrix}
1 & 0 & 0 & -1 & -130 \\
0 & 1 & 0 & -1 & -80 \\
0 & 0 & 1 & -1 & 60 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

The pivots are the 1’s. Not every row has a pivot. The fourth column does not have a pivot - as we will discuss in week 3, this means that we can find a solution which makes the fourth variable take any value we want. Such a variable is called a free variable.
6. Reduced Row Echelon Form

(1) No; Yes; Yes; Yes.
(2) No; No; No; No.

(3) (a) Use Gaussian elimination to obtain \[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

(b) Use Jordan substitution to obtain \[
\begin{pmatrix}
1 & 0 & 0 & -4 \\
0 & 1 & 0 & 3/2 \\
0 & 0 & 1 & 2
\end{pmatrix}.
\]

(c) Use Jordan substitution to obtain \[
\begin{pmatrix}
1 & 0 & -1/2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{pmatrix}.
\]

(d) Use Jordan substitution to obtain \[
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{pmatrix}.
\]

(4) (a) Pivots: 1, 1, 1. No solution.
(b) Pivots: 1, 2, 1. Unique solution.
(c) Pivots: 2, −1. Unique solution.
(d) Pivots: 1, 1. No solution.