Math 218D Problem Session
Week 14

1. **Rules of vector SVD**
 Which of the following $A = \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T$ are valid singular value decompositions? Why/why not?
 a) $A = 1(1, 0)(1, 0)^T + 3(0, 1)(0, 1)^T$
 b) $A = 4(1, 0)(0, 1)^T + 3(0, 1)(1, 0)^T$
 c) $A = 3(1, -1)(1, 0)^T + 2(1, 1)(0, 1)^T$
 d) $A = -3(1/\sqrt{2}, -1/\sqrt{2}, 0)(1, 0)^T + 2(0, 0, 1)(0, 1)^T$
 e) $A = 3(-1/\sqrt{2}, 1/\sqrt{2}, 0)(1, 0)^T + 2(0, 0, 1)(0, 1)^T$
 f) $A = 5(1, 0, 0)(0, 1)^T + 3(0, 1, 0)(1, 0)^T + 2(0, 0, 1)(0, 1)^T$
2. **The matrix SVD** Suppose that A is an $m \times n$ matrix of rank r, with SVD $A = U\Sigma V^T$.

 a) U is a ____ \times ____ matrix, Σ is a ____ \times ____ matrix, and V is a ____ \times ____ matrix. The matrices U and V are _______ matrices. The first ____ diagonal entries of Σ are > 0.

 b) Expand A^TA using $A = U\Sigma V^T$ to see that the matrix A^TA has symmetric diagonalization $Q_1D_1Q_1^T$, with $Q_1 =$ ____ and $D_1 =$ ____. What are the eigenvectors of A^TA? What are the eigenvalues?

 c) Expand AA^T using $A = U\Sigma V^T$ to see that the matrix AA^T has symmetric diagonalization $Q_2D_2Q_2^T$, with $Q_2 =$ ____ and $D_2 =$ ____. What are the eigenvectors of AA^T? What are the eigenvalues?

 d) Suppose that $i \leq r$. The left singular vector u_i is the ith column of U, the singular value σ_i is the ith diagonal entry of Σ, and the right singular vector v_i is the ith column of V. Explain why $Av_i = \sigma_i u_i$ by computing $V^Tv_i, \Sigma V^Tv_i$, and $U\Sigma V^Tv_i$.
3. Computing the vector SVD

To find the vector SVD of a matrix A:

(1) Find the non-zero eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r > 0$ of $A^T A$.

(2) Find an orthonormal basis of each of the λ_i eigenspace of $A^T A$. Listed in order of decreasing eigenvalue, these are the right singular vectors v_1, \ldots, v_r.

(3) For $i = 1, \ldots, r$, set $\sigma_i = \sqrt{\lambda_i}$ and $u_i = \frac{A v_i}{\sigma_i}$. These are the singular values and left singular vectors.

(4) Write $A = \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T$.

Compute the vector SVD of each of the following matrices:

a) $A = \begin{pmatrix} 0 & -1 \\ 3 & 0 \end{pmatrix}$

b) $A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -3 & 0 & 0 \end{pmatrix}$

c) $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$
4. Computing the matrix SVD

To find the matrix SVD $A = U\Sigma V^T$ of a matrix A:

1. Find the symmetric diagonalization VDV^T of $A^T A$, where the eigenvalues are listed in decreasing order: $\lambda_1 \geq \ldots \geq \lambda_n$. The rank r of A is the same as the number of non-zero eigenvalues of $A^T A$ (counted with multiplicity).

2. The columns of V are the right singular vectors v_1, \ldots, v_r, followed by an orthonormal basis v_{r+1}, \ldots, v_n of $\text{Nul}(A)$.

3. For $i = 1, \ldots, r$, set $\sigma_i = \sqrt{\lambda_i}$ and $u_i = \frac{A v_i}{\sigma_i}$. These are the singular values and left singular vectors.

4. We still need the vectors u_{r+1}, \ldots, u_m: find these by computing an orthonormal basis of $\text{Nul}(A^T)$ (using RREF to find a basis, Gram–Schmidt to replace it with an orthonormal basis).

5. Finally, the matrix U is the matrix with columns u_1, \ldots, u_m, the matrix V was found in (1), and Σ has its first r diagonal entries as $\sigma_1, \ldots, \sigma_r$ and the remaining entries of Σ being zero.

Compute the matrix SVD of each of the following matrices:

- **a)** $A = \begin{pmatrix} 0 & -1 \\ 3 & 0 \end{pmatrix}$
- **b)** $A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -3 & 0 & 0 \end{pmatrix}$
- **c)** $A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 4 \end{pmatrix}$
5. Sums of rank 1 matrices

This final problem is not about SVDs, but just about sums of rank one matrices.

a) Without computing A, explain why

$$A = (1, 2, 1)(1, 1)^T + (1, -1, 1)(-1, 1)^T$$

is a rank 2 matrix.

Hint: compute $A(1, 1)$ and $A(-1, 1)$, and use this to show that $(1, 2, 1)$ and $(1, -1, 1)$ are in the column space of A.

b) If $A = u_1 v_1^T + \cdots + u_r v_r^T$ for some vectors $u_i \in \mathbb{R}^m$ and $v_j \in \mathbb{R}^n$, explain why the rank of A is at most r.

Hint: Show that the subspace $\text{Col}(A)$ is contained in the span $\text{Span}\{u_1, \ldots, u_r\}$, which is at most r-dimensional.

c) If the vectors $u_1, \ldots, u_r \in \mathbb{R}^m$ are a linearly independent set of vectors, and the vectors $v_1, \ldots, v_r \in \mathbb{R}^n$ are also linearly independent, prove that

$$A = u_1 v_1^T + \cdots + u_r v_r^T$$

has rank equal to r.

Hint: Show that there is a vector $v \in \mathbb{R}^n$ which is orthogonal to v_2, \ldots, v_r, but $v_1^Tv \neq 0$. Compute Av, and use this to show that $u_1 \in \text{Col}(A)$. The same idea shows that u_2, \ldots, u_r are all in $\text{Col}(A)$.