Math 218D Problem Session

Week 12

1. Shape of quadratic forms

For each of the following quadratic forms:

(1) Plot the equation $q(x, y) = 1$ using a computer, and describe the shape (for example, for **a)** you should get an ellipse in **R** 2 , not an elliptic paraboloid in R^3).

(2) Find the 2 × 2 symmetric matrix
$$
S = \begin{pmatrix} a & b \\ b & c \end{pmatrix}
$$
 such that

$$
q(x,y) = \left(x \quad y\right)S\left(\begin{array}{c}x\\y\end{array}\right) = ax^2 + 2bxy + cy^2.
$$

- (3) Recall that a symmetric matrix is **positive-definite** if all of its eigenvalues are positive. Test if the symmetric matrix *S* is positive-definite or not using the **pivot test**: Put *S* into REF without doing row-swaps or scaling. (If you need to do a row-swap, the matrix is not positive-definite.) If the diagonal entries of the REF are all positive, then *S* is positive-definite.
- (4) What does the positive-definiteness of *S* have to do with the shape from (1)? You may need to do many examples until you see the pattern.
- **a**) $q(x, y) = 2x^2 + 3y^2$ has $S = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, which is positive-definite, and $q = 1$ is an ellipse.
- **b**) $q(x, y) = x^2 5y^2$ has $S = \begin{pmatrix} 1 & 0 \\ 0 & -5 \end{pmatrix}$ $0 -5$ λ , is not positive-definite, and $q=1$ is a hyperbola.
- **c**) $q(x, y) = y^2$ has $S = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, is not positive-definite, and $q = 1$ is two lines.
- **d**) $q(x, y) = -3x^2 2y^2$ has $S = \begin{pmatrix} -3 & 0 \\ 0 & -2 \end{pmatrix}$ $0 -2$ λ , is not positive-definite, and $q=1$ is empty.
- **e**) $q(x, y) = x^2 + 3xy + y^2$ has $S = \begin{pmatrix} 1 & 3/2 \\ 3/2 & 1 \end{pmatrix}$, is not positive-definite, and $q = 1$ is a hyperbola.
- **f)** $q(x, y) = 2x^2 + 4xy + y^2$ has $S = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$, is not positive-definite, and $q = 1$ is a hyperbola.

g)
$$
q(x, y) = x^2 - 4xy + 5y^2
$$
 has $S = \begin{pmatrix} 1 & -2 \ -2 & 5 \end{pmatrix}$, is positive-definite, and $q = 1$ is an ellipse.

h) $q(x, y, z) = x^2 + y^2 + z^2 + xy + yz + xz$ has $S =$ 1 1*/*2 1*/*2 1*/*2 1 1*/*2 $\begin{pmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{pmatrix}$, is positive-

definite, and $q = 1$ is an ellipsoid.

i) $q(x, y, z) = x^2 + y^2 + z^2 + 2xy + 2yz + 2xz$ has $S =$ $(1 \; 1 \; 1)$ 1 1 1 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, is not positive-

.

definite, and $q = 1$ is two planes.

2. Diagonalizing quadratic forms

Consider the quadratic form

$$
q(x, y) = \frac{5}{2}x^2 + 3xy + \frac{5}{2}y^2
$$

\na) $S = \begin{pmatrix} 5/2 & 3/2 \\ 3/2 & 5/2 \end{pmatrix}$
\nb) $S = (\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}) \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} (\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix})^{-1}$

- **c**) The ellipse $q(x, y) = 1$ is a rotated version of the ellipse $4x_0^2 + 1y_0^2 = 1$.
- **d**) $(x_0, y_0) = Q^T(x, y) = ((1/$ p 2)*x* + (1*/* p 2) *y*,(−1*/* p 2)*x* + (1*/* p 2) *y*).
- **e**) In terms of equations and not pictures, we can see that $4x_0^2 + 1y_0^2 = 1$ is an ellipse since both 4 and 1 are positive. Since the change of variables (x_0, y_0) = $((1/\sqrt{2})x + (1/\sqrt{2})y, (-1/\sqrt{2})x + (1/\sqrt{2})y))$ corresponds to a rotation (*Q* is a rotation matrix!), this means that $q(x, y) = 1$ is a rotated ellipse. p \cdot . p p
- **f)** The function $q(x, y) = 4((1)$ 2)*x* + (1*/* $(2)(y)^2 + ((-1)^2)$ 2)*x* + (1*/* $\overline{2}$)*y*)² is non-negative, as it is a sum of squares with positive coefficients. If it were equal to zero, then both $(1/\sqrt{2})x + (1/\sqrt{2})y$ and $(1/\sqrt{2})x + (1/\sqrt{2})y$ would need to equal zero - but this would mean that $x = y = 0$.
- **g**) The major axis has length $1/\sqrt{\lambda_2} = 1$ and the minor axis has length $1/\sqrt{\lambda_1} =$ 1*/*2. One explanation for this is that you can check the length of the axis of the ellipse $4x_0^2 + 1y_0^2 = 1$ by finding the x_0 and y_0 intercepts (as an ellipse in the (x_0, y_0) plane). p
- **h)** The direction of the major axis is the second eigenvector $1/\sqrt{2}(-1,1)$, while the direction of the minor axis is the first eigenvector $1/\sqrt{2}(1,1)$.
- **i)** The maximum value of $q(x, y) = 1$, constrained to $||(x, y)|| = 1$, is the larger eigenvalue, 4, and is achieved at $(x, y) = \pm 1/\sqrt{2}(1, 1)$. The minimum value of $q(x, y) = 1$, constrained to $||(x, y)|| = 1$, is the smaller eigenvalue, 1, and is achieved at $(x, y) = \pm 1/\sqrt{2}(-1, 1)$.

3. *LDL^T* **decomposition**

a)
$$
S = \begin{pmatrix} 2 & 1 \ 1 & 2 \end{pmatrix}
$$
. This has REF (no scaling or swapping) given by $U = \begin{pmatrix} 2 & 1 \ 0 & 3/2 \end{pmatrix} =$
\n $\begin{pmatrix} 2 & 0 \ 0 & 3/2 \end{pmatrix} \begin{pmatrix} 1 & 1/2 \ 0 & 1 \end{pmatrix} = DL^T$. Therefore $S = \begin{pmatrix} 1 & 0 \ 1/2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \ 0 & 3/2 \end{pmatrix} \begin{pmatrix} 1 & 0 \ 1/2 & 1 \end{pmatrix}^T$.
\n**b)** $S = \begin{pmatrix} 4 & 0 & 2 \ 0 & 1 & 0 \ 2 & 0 & 4 \end{pmatrix}$ has REF $U = \begin{pmatrix} 4 & 0 & 2 \ 0 & 1 & 0 \ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1/2 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$. Therefore $S = \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 1/2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 1/2 & 0 & 1 \end{pmatrix}^T$.

4. Relation to the quadratic formula

For 2 × 2 symmetric matrices $S = \begin{pmatrix} a & \frac{1}{2} \\ \frac{1}{2}b & \frac{1}{2} \end{pmatrix}$ $rac{1}{2}b$ 1 $\begin{pmatrix} a & \frac{1}{2}b \\ \frac{1}{2}b & c \end{pmatrix}$, there is an easy test for positivedefiniteness, the **discriminant test**:

S is positive-definite if and only if both $a > 0$ and $b^2 - 4ac < 0$.

Let's verify this test in two ways, by relating it to other tests.

a) Method one: Relate the discriminant test to the **determinant test**: *S* is positivedefinite if and only if det((*a*)) *>* 0 and det($\int a^{-\frac{1}{2}}$ $\frac{1}{2}b$ 1 $\frac{a}{\frac{1}{2}b}$ $\frac{\frac{1}{2}b}{c}$ $> 0.$ The first determinant condition is just $a > 0$. The second determinant is *ac* − (1/4)*b*. This is positive if and only if $b^2 - 4ac < 0$.

b) Method two:

(1) The quadratic form $q(x, y) = (x, y)^T S(x, y)$ equals

$$
q(x, y) = ax^2 + bxy + cy^2
$$

and factors into

$$
q(x,y) = a(x - \frac{-b + \sqrt{b^2 - 4ac}}{2}y)(x - \frac{-b - \sqrt{b^2 - 4ac}}{2}y).
$$

You can verify this factorization using the quadratic formula (pretend *y* is a number, and find the two roots of $ax^2 + (by)x + (cy^2)$: $x =$ −*b y*± a $\frac{b^2y^2-4acy^2}{2a} = \frac{-b\pm}{}$ $\mathop{\rm Im}\nolimits$ *b* ²−4*ac* $\frac{y^2-4ac}{2a}y$). p

(2) The only way $q(x, y)$ can equal 0 is if $a = 0$ or if $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ $\frac{y^2-4ac}{2a}y$. But this latter condition is impossible if $b^2 - 4ac < 0$ and $y \neq 0$, since $x/y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\frac{2a}{2a}$ is imaginary while *x* and *y* are real, a contradiction.

Now, if $y = 0$ the equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ p *b* ²−4*ac* $\frac{y_0^2-4ac}{2a}y$ would mean that $x=0$ as well. well.
In other words, since *b²−4ac <* 0 means that *√b²−4ac* is imaginary, the only *real* solution to the equation $a(x-\frac{-b+\sqrt{b^2-4ac}}{2})$ *y*)(*x*−^{*-b*−**⁄**_{*b*²−4*ac*}₂</sup>} $\frac{y^2-4ac}{2}y) =$ 0 is $(0, 0)$.

(3) If both $a \neq 0$ and $b^2 - 4ac < 0$, the previous step implies that either $q(x, y) > 0$ for all $(x, y) \neq (0, 0)$ or $q(x, y) < 0$ for all $(x, y) \neq (0, 0)$. This is because a change in sign for $q(x, y)$, on the unit circle $x^2 + y^2 = 1$, would require $q(x, y)$ to be zero somewhere on the unit circle, which it is not.

Since $a > 0$, this means that $q(1, 0) = a > 0$. Since q is positive at one point, it is positive everywhere except $(0, 0)$. Therefore the "positiveenergy criterion" is true.

In other words, we have shown that **if** *S* **satisfies the discriminant test, it satisfies the energy test.**