1. **Matrices with complex eigenvalues**

Consider the matrices $A = \begin{pmatrix} 0 & -1/2 \\ 1/2 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

a) Compute the eigenvalues of A and B. Write each eigenvalue in polar coordinates $z = re^{i\theta}$.

b) Compute the eigenvectors of A and B.

Math 218D Problem Session

Week 11

2. **The dynamics of a diagonal matrix**

Consider the matrix $A = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$.

a) For each of the following vectors, plot v, Av, and A^2v:

1. $v = (1, 0)$
2. $v = (0, 1)$
3. $v = (1, 1)$

b) For each of the same vectors, sketch the shape you get by connecting the dots between the points $\ldots, A^{-2}v, A^{-1}v, v, Av, A^2v, \ldots$.

c) For the vector $v = (1, 1)$, what direction is the vector $A^n v$ approximately pointing when n is very large? In other words, what unit vector does $\frac{A^n v}{\|A^n v\|}$ approximate when n is very large?

d) For the vector $v = (1, 1)$, what direction is $A^{-n} v$ approximately pointing when n is very large?
3. **The dynamics of a diagonalizable matrix**
Consider the matrix A with $A(1, 1) = 3(1, 1)$ and $A(1, -2) = 2(1, -2)$. In other words, A is diagonalizable and you have been told the eigenvectors and eigenvalues.

a) For each of the following vectors, plot v, Av, A^2v:
 (1) $v = (1, 1)$
 (2) $v = (1, -2)$
 (3) $v = (2, -1)$

 You can do this without computing the matrix A!

b) For each of the same vectors, sketch the shape you get by connecting the dots between the points ..., $A^{-2}v$, $A^{-1}v$, v, Av, A^2v, ...

c) For the vector $v = (2, -1)$, what direction is the vector $A^n v$ approximately pointing when n is very large?

d) For the vector $v = (2, -1)$, what direction is $A^{-n}v$ approximately pointing when n is very large?
4. Dynamics of complex matrices

Consider the matrices

\[A = \begin{pmatrix} 0 & -1/2 \\ 1/2 & 0 \end{pmatrix} \] and \[B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \]
you studied in problem 1.

a) Plot the points \((4, 0), A(4, 0), A^2(4, 0), A^3(4, 0), A^4(4, 0)\). Connect the dots between these points. Predict the shape that you would get if you continued to \(A^5(4, 0), A^6(4, 0), \ldots\).

b) Plot the points \((1, 0), B(1, 0), B^2(1, 0), B^3(1, 0), B^4(1, 0)\). Connect the dots between these points. Predict the shape that you would get if you continued to \(B^5(4, 0), B^6(4, 0), \ldots\).

c) What do the eigenvalues you found in problem 1a) explain about your pictures from a) and b)?

d) Find complex scalars \(a, b\) such that \((1, 0) = av_1 + bv_2\), where \(v_1\) and \(v_2\) are the eigenvectors for \(B\) you found in problem 1c).

e) Compute \(B^n(1, 0)\) in terms of complex exponentials.

f) Use Euler's formula \(e^{i\theta} = \cos(\theta) + i\sin(\theta)\) to write \(B^n(1, 0)\) in terms of trig. functions (no complex numbers should appear in your final answer).

g) Can you predict a formula for \(A^n(4, 0)\) in terms of trig. functions?
5. Some quick matrix exponentials

Compute the matrix exponential e^A of:

(1) $A = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$,

(2) $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$,

(3) $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$,

(4) $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$,

(5) $A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.
6. **A differential equation**

Consider the system of differential equations

\[
\begin{align*}
x'(t) &= 3x(t) + 2y(t) \\
y'(t) &= 4x(t) - 4y(t)
\end{align*}
\]

a) Write this as a matrix differential equation

\[
\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.
\]

What is the matrix \(A \)?

b) For this matrix \(A \), find the eigenvalues \(\lambda_1 \) and \(\lambda_2 \), as well as the eigenvectors \(w_1 \) and \(w_2 \).

c) Every solution is of the form \((x(t), y(t)) = a_1 e^{\lambda_1 t} w_1 + a_2 e^{\lambda_2 t} w_2\). If you want the solution to have initial value \((x(0), y(0)) = (1, 1)\), which scalars \(a_1 \) and \(a_2 \) should you choose?

d) Plug the solution with initial value \((x(0), y(0)) = (1, 1)\) to the differential equation, and confirm that it is a solution.

e) For the solution you found in c), compute \((x(1), y(1))\).
7. **A complex ODE**

Consider the system of differential equations

\[
\begin{align*}
 x'(t) &= x(t) - y(t), \\
 y'(t) &= x(t) + y(t).
\end{align*}
\]

a) Write this as a matrix differential equation \(\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} \).

b) Compute the eigenvalues \(\lambda_1, \lambda_2 \) and eigenvectors \(v_1, v_2 \) of the matrix \(A \).

c) Compute the real and imaginary parts of the “eigenvector solution” \((x(t), y(t)) = e^{\lambda_1 t} v_1 \). This gives you two different real solutions to the differential equation.

d) Find the solution \((x(t), y(t)) \) with initial value \((x(0), y(0)) = (1, 0) \).