LU Decompositions

Fact: If Gaussian elimination on A requires no new swaps then $A = L U$ for L lower unidular and U in REF

$$
E_8: \begin{pmatrix} 2 & 1 & 0 \\ 4 & 4 & 4 \\ 6 & 1 & 0 \end{pmatrix} = A = UU = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 4 \end{pmatrix}
$$

Why do we care?
Renli Solving
$$
Ax=b
$$
 (for A nm) requires $\propto \frac{2}{3}n^3$ flops

Algorithm (colving
$$
Ax=b
$$
 using $A=LU$)
Input: A_n Lu factorization $A=LU$ & vector b
Output: A solution of $Ax=b$
Product:

$$
(1)
$$
 Solve $Ly = b$ using ~~Forward~~ - substitution

$$
\begin{bmatrix} 10 & 0 \\ 10 & 0 \\ 0 & 1 \end{bmatrix} \mathcal{G} = b \equiv \begin{bmatrix} y_1 + y_1 = b_2 \\ y_2 + y_1 = b_2 \\ y_1 = b_2 \\ y_1 = b_1 \end{bmatrix}
$$

$$
(2) \text{ Solve } Ux=y \text{ using backward-substitution}
$$
\n
$$
\begin{pmatrix} n^2 & \frac{1}{2} \log 5 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} n^2 & \frac{1}{2} \log 5 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 1 & \frac{1}{2} \log 5 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \log 5 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \log 5 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \log 5 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \log 5 \end{pmatrix} = A = UU = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \
$$

Where does A = LU come from? How to compute it? It you can run Gaussian elimination with no now swaps then $A\frac{m}{\epsilon}SUEFE$ using row ops of the form $R_i + \mathbb{E} c R_j$ (i) $\iff E = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right] R_i + \mathbb{E} c R_i$ In this case $U = (E_i \cdot E) A$, $U = REF$ E_i = elementary matrix for R_i +=c R_i , $i > j$ (dear down) E_i is lower - uni Δu lar \Rightarrow $E_r - E_r$ is lower-mi \triangle ular \Rightarrow $L = (E_r - E)^{-1}$ is lower -uni \triangle ular and $LU = \underbrace{E - E \cdot E}_{L} (E - E)A = I A - A$ NB: L=(Er ... E.)⁻¹ "records the row operations" \rightarrow keeps track of elimination NB: AzLU is a matrix factorization: it is a way to write a matrix $as \circ \rho$ reduct of simpler matrices We will learn many more of these

 E_8 : $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ $\begin{bmatrix} k_2 - 4k_1 \\ -5k_3 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 9 & -3 & -6 \\ 7 & 8 & 9 \end{bmatrix}$ $E_i = \begin{bmatrix} 1 & 0 & 9 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $R_3 = R_1 \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -1 \end{bmatrix}$ $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{bmatrix}$ $R_3 = 2R_2$ $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$ $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$ LE , $E=E$, $E|$ $\bigcap E$ = $E^{-1}E$, E^{-1} To compute $E^{-1}E^{-1}E^{-1}=E^{-1}E^{-1}E^{-1}E^{-1}J_3$ $\left[\begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$ start with I_3 : $R_3F=2R_2$
 $E_3^{-\frac{1}{2}}$ undo E_3 $\left[\begin{array}{ccccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{array}\right]$ $R_3 + 2R_1$
 $E_1 + 2R_2$ $\left[\begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 1 \end{array}\right]$ $\begin{bmatrix} 1 & 0 & 0 \\ 4 & 0 & 0 \\ 2 & 2 & 1 \end{bmatrix} = L$ $R_{2}+24R_{1}$
 $E_{1}+24R_{2}$

Check:
$$
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}
$$

\nHere's a better way to do the bookkeeping.

\nAlgo-film (LU Decomposition) 2 column method):

\nLength: A matrix where Gaussian elimination, requires no row swaps.

\nOutput: A Factorization A=LU, for L lower– with a factorization, and U in REF (the output of Gaussian elimination).

\nProcative: Do Gaussian elimination, keeping track of the row operations as follows: $3\pi\pi\pi$ with a blank row matrix L.

\n\n- For each row replacement $R_1 + z \in R_3$, $pd - c$ in the (i,j) entry of L.
\n
\nAdd: $1 \leq \Delta O_5$ is the triangular solution.

\nThen

 $A = LU$

$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 9 & 1 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 9 & 1 \end{bmatrix}
$$

\n
$$
B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 6 & 1 \end{bmatrix}
$$

\n
$$
B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}
$$

\n
$$
B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}
$$

\n
$$
B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}
$$

\n
$$
B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}
$$

\n
$$
B = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 7 & 8 & 9 \end{bmatrix}
$$

\n
$$
C = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 2 & 1 \end{bmatrix}
$$

\n
$$
C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & -6 \\ 7 & 0 & 0 \end{bmatrix}
$$

Ms Finding A LU is just Gaussian elimination ^t extra bookkeeping \rightsquigarrow same complexity. $\approx \frac{1}{3}n^2$ flops Then after computing $A = LU$, solving $Ax = b$ requires $22 - \frac{2}{3}$

Still have to do elimination once, but then solving $Ax = b$ for new values of b is much faster.

 E_j : If A is 1000 x1000 and we want to solve $Ax=b$ for loss values of b : 3 gigatlops to compute $A = LU$ \cdot 2 megatlops \times 100 = 2 gigatlops to solve $Ax = b$ 1000 times. That's $250 \times$ faster than $\frac{2}{3}$ teraflops from doing elimination 1000 times! [demo]

What about inverses? Wauldn't it be better to compute A^{-1} and solve A $x=b$ 1000 times No for 2 reasons 1) Computing A' takes $x\frac{1}{2}n^3$ tlops: twice as long as the elimination step (2) Computing A^{-1} is not numerically stable less accurate due to rounding errors

```
from sympy import *
from time import time
# This is the 10x10 matrix with 2's on the diagonal and 1's elsewhere \# eve(n) = nxn identity matrix: ones(n) = nxn matrix of 1's
      eye(n) = nxn identity matrix; ones(n) = nxn matrix of 1's
 # (multiply by 1.0 to force it to use floating point arithmetic)
A = (eye(10) + ones(10)) * 1.0# This is the vector [1,1,1,1,1,1,1,1,1,1]
b = ones(10, 1) * 1.0start = time()# Compute LU decomposition
L, U, = A.LUdecomposition()
# Solve using forward- and reverse-substitution 1000 times
for _ in range(1000): U.upper_triangular_solve(L.lower_triangular_solve(b))
end = time()print(end - start)
# "7.144780397415161" (seconds)
start = time()# Solve using elimination 1000 times
for \mathbf{u} in range(1000): A.solve(b)
end = time()print(end - start)
# "48.048372983932495" (seconds)
 # Roughly 10x slower!
```
Maximal Partial Probing
\nE₃ { x, =1
\nLet's **t** be the **u**th
\n
$$
\begin{cases}\n10^{11}x_1 + x_2 = 2 \\
x_1 + x_2 = 2\n\end{cases}
$$
\n
$$
\begin{cases}\n10^{11}x_1 + x_2 = 1 \\
x_1 + x_2 = 2\n\end{cases}
$$
\n
$$
\begin{cases}\n10^{-17} \text{ N } x_1 + x_2 = 1 \\
x_1 + x_2 = 2\n\end{cases}
$$
\n
$$
\begin{cases}\n10^{-17} \text{ N } x_1 + x_2 = 1 \\
x_1 + x_2 = 2\n\end{cases}
$$
\n
$$
\begin{cases}\n10^{-17} \text{ N } x_1 + x_2 = 1 \\
00^{-1} \text{ N } x_1 + x_2 = 1\n\end{cases}
$$
\n
$$
\begin{cases}\n10^{-17} \text{ N } x_1 + x_2 = 1 \\
10^{-17} \text{ N } x_1 + x_2 = 1\n\end{cases}
$$
\n
$$
\begin{cases}\n10^{-17} \text{ N } x_1 + x_2 = 1 \\
10^{-17} \text{ N } x_1 + x_2 = 1\n\end{cases}
$$
\n
$$
\begin{cases}\n10^{-17} \text{ N } x_1 = 2 - 10^{17} \\
\text{ N } x_1 = 10^{17} (1 - x_2) = \frac{10^{17}}{10^{17} - 1} \times 1\n\end{cases}
$$
\nLet's **th** y, **th** is on a **complete**.
\nL) Find **u** end using **u** to **u** may
\n
$$
\begin{cases}\n10^{17} \text{ N } x_1 = 10^{17} \text{ N } x_1 = 10^{17
$$

```
from sympy import *
 # 1e-17 is 10^(-17)
A = Matrix([[1e-17, 1.0, 1.0], [1.0, 1.0, 2.0]])
 # This does R2 -= 10^(17) R1
 # (force sympy to use the smaller pivot)
A.row_op(1, lambda v, j: v - 1e17*A[0,j])
pprint(A)<br># [le-17
 # [1e-17 1 1]
 # [0 -1e17 -1e17]
# Now do Jordan substitution
pprint(A.rref(pivots=False))
# [1 0 0]
# [0 1 1]
# This answer is numerically very wrong!
```

$$
\begin{bmatrix}\n10^{-17} & 1 & 1 \\
0 & 1 & 2\n\end{bmatrix} \begin{bmatrix}\nR_2 - 60^2R_1 \\
D_1 + 1 & 2\n\end{bmatrix} = \begin{bmatrix}\n10^{-17} + 1 \\
0 & 10^{-17} + 12\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n10^{-17} + 120 = 1 \\
X_2 = 1\n\end{bmatrix}
$$
\n(0, 1) $\frac{1}{2}$ {1, 1} = 10¹⁷ (0) = 0
\n(0, 1) $\frac{1}{2}$ {1, 1} = 10¹⁷ (0) = 0
\n(0, 1) $\frac{1}{2}$ {1, 1} = 10¹⁷ (0) = 0
\n(0, 1) $\frac{1}{2}$ {1, 1} = 10¹⁷ (0) = 0
\n(0, 1) $\frac{1}{2}$ {1, 1} = 10¹⁷ (0) = 0
\n(0, 1) $\frac{1}{2}$ {1, 1} = 10¹⁷ (0) = 0
\n(0, 1) $\frac{1}{2}$ {1, 1} = 10¹⁷ (0) = 0
\n(0, 1) $\frac{1}{2}$ {1, 1} = 10¹⁷ (0) = 0
\n(0, 1) $\frac{1}{2}$ {1, 1} = 10¹⁷ (0) = 0
\n(0, 1) $\frac{1}{2}$ {1, 1} = 1
\n(1) $\frac{1}{2}$ {1, 1} = 1
\

PAZLU Decompositions Recall: LU only works when you don't need to row swap when eliminating But elimination works much better with row swaps! Need to tweak LU

Idea: Do all the row swaps you need first, then do elimination without row swaps How do you know in advance which row swaps to do? Uou don't - need to do mere bookkeeping) Def: A permutation matrix \approx a product of elementary matrices for row swaps.

$$
Trick: \qquad P_{2}E_{3}E_{1} = (P_{2}E_{3}E_{1}P_{2})P_{2} \qquad P_{2}P_{3}E_{3}
$$
\n
$$
\overline{B_{1}}\overline{C_{2}C_{1}}\overline{C_{1}}\overline{D_{2}}\overline{D_{3}}
$$

$$
P_{2}E_{1}P_{2} = P_{2}E_{2}E_{1}\begin{bmatrix}1&0&0\\ 0&0\\ 0&0\end{bmatrix}
$$

\n $P_{2}E_{0}E_{1}P_{2}\begin{bmatrix}1&0&0\\ 1/1&0&0\\ 1/2&1&0\end{bmatrix}$
\n $P_{3}E_{2}R_{1}\begin{bmatrix}1&0&0\\ 1/2&1&0\\ 1/2&0&0\\ 1/2&0&0\end{bmatrix}$

lower uni<mark>∆ula</mark>r

Then
$$
U = E_3(P_2 E_3 E_1 P_2 P_1 A
$$

\n $\Rightarrow PA = LM$
\n $6r P = P_2 P_1 L = (E_3 P_2 E_3 E_1 P_2)^{-1}$
\nHere is an efficient way of doing

the bookkeeping.

Algorithm (PA=LU Decomposition; 3 column method): Input: Any matrix A Output: \overline{A} factorization $PA = LU$ where: p permutation matrix L lower unitriangular matrix U REF matrix Procedure: Perform Gaussian elimination using any pivoting strategy leg maximal partial pivoting). Keep track of row operations as follows: start with a blank matrix h and an identity matrix P. \bullet for each row replacement $R_i \leftrightarrow_C R_j$, put \sim in the (ij) entry of L (as before) . For each row swap $R_i \rightarrow R_j$ swap the corresponding rows of L and P Add 1 's & 0 's to the remaining blank entries of L (i's on the diagonal, \overline{O}_{S}^{1} electere) Then $PA = LU$

$$
\frac{F_{23}}{F_{31}} = \frac{1}{20} \times \frac{1}{10} = \frac{1}{20} \times \frac{1}{10} = \frac{1}{20} \times \frac{1}{10} = \frac{1}{20} \times \frac{1}{20} = \frac{1
$$

 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -10 & -20 & -30 \\ 5 & 15 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ -1/0 & -1/5 & 0 \end{bmatrix} \begin{bmatrix} -10 & -20 & -30 \\ 0 & 5 & -5 \\ 0 & 0 & -3 \end{bmatrix}$

Con we still use this to solve
$$
Ax=b
$$
?
\nAlgorithm (colving $Ax=b$ using PA=LI)
\nSolving $Ax=b$ is the same as $PAx=fb_3$ so:
\n(o) Compute Ph (re-order the enters of b) (0.140)
\n(I) Solve L₃ = Pb using forward-substitution (a in Hz)
\n(1) Solve L₃ = Pb using backward-substitution (a in Hz)
\n(2) Solve Ux=y using backward-substitution (a in Hz)
\nThen $PAx = LUx = Ly = Pb$
\n $\Rightarrow Ax = b$ (multiply both sides by P⁻¹)
\n $\Rightarrow Ax = b$ (multiply both sides by P⁻¹)
\n $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -20 & -30 \\ 5 & 10 & 0 \end{bmatrix}$ $b = \begin{bmatrix} 0 \\ -10 \\ 10 \end{bmatrix}$
\n(s) $Ph = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ -10 \\ 10 \end{bmatrix} = \begin{bmatrix} -10 \\ 10 \\ 0 \end{bmatrix}$
\n(s) $\begin{bmatrix} -1/2 & 1 & 0 \\ -1/2 & 1 & 0 \\ -1/2 & 1 & 0 \\ -1/2 & 1 & 0 \end{bmatrix}$ $y = Pb = \begin{bmatrix} -10 \\ 10 \\ 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & -10 \\ 10 & -1 \end{bmatrix}$
\n $\Rightarrow y = 0$
\n $\Rightarrow y = 0$
\n $\Rightarrow y = 0$