Please read all instructions carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the printed pages (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a calculator for doing arithmetic, but you should not need one. All other materials and aids are strictly prohibited.
- For full credit you must show your work so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without notes or distractions.
Problem 1. [20 points]

Consider the plane

\[V = \{(x, y, z) : x - y + 2z = 0\}. \]

a) Find a basis for \(V \).

\[
\begin{bmatrix}
\end{bmatrix}
\]

b) Find an orthogonal basis for \(V \).

\[
\begin{bmatrix}
\end{bmatrix}
\]

c) Use the projection formula and your answer to part b) to compute the orthogonal projection \(b_V \) of the vector \(b = (1, 1, -3) \) onto \(V \).

\[
b_V = \begin{bmatrix}
\end{bmatrix}
\]

d) Find a basis for \(V^\perp \).

\[
\begin{bmatrix}
\end{bmatrix}
\]

e) Find an orthogonal basis of \(\mathbb{R}^3 \) containing the basis vectors you found in b).

\[
\begin{bmatrix}
\end{bmatrix}
\]
Problem 2. [20 points]

Consider the matrix

\[
A = \begin{pmatrix}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{pmatrix}.
\]

a) Find the QR decomposition of \(A \). You should get

\[
R = \begin{pmatrix}
\sqrt{5} & -\sqrt{5} & 4\sqrt{5} \\
0 & 6 & -2 \\
0 & 0 & 4
\end{pmatrix},
\]

\[
Q = \begin{pmatrix}
\end{pmatrix}.
\]
b) Solve $R\tilde{x} = Q^T \begin{pmatrix} 2 \\ -2 \\ 4 \\ -3 \\ 3 \end{pmatrix}$ to find the least-squares solution of $Ax = \begin{pmatrix} 2 \\ -2 \\ 4 \\ -3 \\ 3 \end{pmatrix}$.

\[\tilde{x} = \begin{pmatrix} \end{pmatrix} \]

c) Compute the matrix P_V for projection onto $V = \text{Col}(A)$.

\[P_V = \begin{pmatrix} \end{pmatrix} \]
Problem 3. [15 points]

Consider the data points

\[b_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad b_1 = \begin{pmatrix} 1 \\ 8 \end{pmatrix} \quad b_2 = \begin{pmatrix} 3 \\ 8 \end{pmatrix} \quad b_3 = \begin{pmatrix} 4 \\ 20 \end{pmatrix} \]

drawn below.

\[\begin{array}{c}
\vdots \\
\vdots \\
\end{array} \]

a) Find the matrix \(A \) such that the least-squares solution \(\bar{x} = (C, D) \) of

\[A \begin{pmatrix} C \\ D \end{pmatrix} = b = \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix} \]

gives the coefficients of the best-fit line \(y = Cx + D \).

\[A = \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \]

b) Find the equation of the best-fit line by computing the least-squares solution of the above equation. Graph this line in the above grid.

\[y = \square x + \square \]
c) Compute the minimized vector b_{V^\perp}. What does b_{V^\perp} represent in the original best-fit problem? (Here $V = \text{Col}(A)$.)

$$ b_{V^\perp} = \begin{pmatrix} \hline \end{pmatrix} $$

\[\text{d) What is the best-fit line among all lines passing through the origin?} \]

$$ y = \square x $$
Problem 4. [12 points]

A line V and a vector b are drawn below. Draw and label:

a) The orthogonal projection b_V.

b) The projection onto the orthogonal complement b_{V^\perp}.

c) The vector $b - 2b_{V^\perp}$.
Problem 5. [20 points]

Find a basis of the orthogonal complement of each of the following subspaces.

a) \(\text{Nul} \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 1 \end{pmatrix} \)

b) \(\text{Col} \begin{pmatrix} 1 & 2 & -4 \\ 0 & -1 & 3 \\ 3 & 0 & 6 \\ 4 & -1 & 11 \end{pmatrix} \)

c) The subspace of all vectors in \(\mathbb{R}^4 \) whose entries sum to zero.

d) The line \(\{(t, 2t, 3t) : t \in \mathbb{R}\} \).

e) \(\mathbb{R}^3 \)
Problem 6. [16 points]

a) Let A be an $m \times n$ matrix of rank r. Which of the following statements are equivalent to “A has full row rank”?

1. $\text{Nul}(A^T) = \{0\}$
2. $n = r$
3. $\text{Col}(A) = \mathbb{R}^m$
4. A has linearly independent columns
5. A has a pivot in every row
6. A is invertible
7. $Ax = b$ is consistent for every vector b

b) Explain why the projection matrix P_V onto a subspace V can be written as QQ^T for some matrix Q with orthonormal columns. (What is Q in terms of V?)

c) Find three nonzero vectors $v_1, v_2, v_3 \in \mathbb{R}^3$ such that $\{v_1, v_2, v_3\}$ is linearly dependent, but v_3 is not in $\text{Span}\{v_1, v_2\}$. Be sure to label which is v_3.

d) Give an example of a 4×4 matrix A such that $\text{Nul}(A) = \text{Row}(A)$, or explain why no such matrix exists.