Please read all instructions carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the printed pages (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a calculator for doing arithmetic, but you should not need one. All other materials and aids are strictly prohibited.
- For full credit you must show your work so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without notes or distractions.
Problem 1. [20 points]

Consider the plane

\[V = \{(x, y, z) : x - y + 2z = 0\}. \]

a) Find a basis for \(V \).

b) Find an orthogonal basis for \(V \).

c) Use the projection formula and your answer to part b) to compute the orthogonal projection \(b_V \) of the vector \(b = (1, 1, -3) \) onto \(V \).

d) Find a basis for \(V^\perp \).

e) Find an orthogonal basis of \(\mathbb{R}^3 \) containing the basis vectors you found in b).

Solution.

a) There are many answers. If you find the solutions of \(x - y + 2z = 0 \) in parametric vector form, you get

\[\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}. \]

b) Running Gram–Schmidt on the above vectors gives

\[\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\}. \]

c) \[b_V = \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}. \]

d) Since \(V = \text{Nul} \begin{pmatrix} 1 & -1 & 2 \end{pmatrix} \), the orthogonal complement \(V^\perp \) is the row space of \(\begin{pmatrix} 1 & -1 & 2 \end{pmatrix} \):

\[\left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \right\}. \]

e) We just add the vectors in b) and d):

\[\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \right\}. \]

(You could also notice that \(b - b_V = (-1, 1, -2) \) spans \(V^\perp \).)
Problem 2. [20 points]

Consider the matrix

\[
A = \begin{pmatrix}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{pmatrix}.
\]

a) Find the QR decomposition of \(A\). You should get \(R = \begin{pmatrix}
\sqrt{5} & -\sqrt{5} & 4\sqrt{5} \\
0 & 6 & -2 \\
0 & 0 & 4
\end{pmatrix}\).

b) Solve \(R\hat{x} = Q^T \begin{pmatrix} 2 \\ -2 \\ 4 \\ -3 \\ 3 \end{pmatrix}\) to find the least-squares solution of \(Ax = \begin{pmatrix} 2 \\ -2 \\ 4 \\ -3 \\ 3 \end{pmatrix}\).

c) Compute the matrix \(P_v\) for projection onto \(V = \text{Col}(A)\).

Solution.

a) \(Q = \begin{pmatrix}
1/\sqrt{5} & 1/2 & 1/2 \\
-1/\sqrt{5} & 0 & 0 \\
-1/\sqrt{5} & 1/2 & 1/2 \\
1/\sqrt{5} & -1/2 & 1/2 \\
1/\sqrt{5} & 1/2 & -1/2
\end{pmatrix}\)

b) \(\hat{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\)

c) \(P_v = QQ^T = \frac{1}{10} \begin{pmatrix}
7 & -2 & 3 & 2 & 2 \\
-2 & 2 & 2 & -2 & -2 \\
3 & 2 & 7 & -2 & -2 \\
2 & -2 & 2 & 7 & -3 \\
2 & -2 & -2 & -3 & 7
\end{pmatrix}\)
Problem 3. [15 points]

Consider the data points

\[
\begin{align*}
 b_1 &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} & b_1 &= \begin{pmatrix} 1 \\ 8 \end{pmatrix} & b_2 &= \begin{pmatrix} 3 \\ 8 \end{pmatrix} & b_3 &= \begin{pmatrix} 4 \\ 20 \end{pmatrix}
\end{align*}
\]

drawn below.

![Graph with data points](image)

a) Find the matrix \(A \) such that the least-squares solution \(\bar{x} = (C, D) \) of

\[
A \begin{pmatrix} C \\ D \end{pmatrix} = b = \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix}
\]

gives the coefficients of the best-fit line \(y = Cx + D \).

b) Find the equation of the best-fit line by computing the least-squares solution of the above equation. Graph this line in the above grid.

c) Compute the minimized vector \(b \perp \). What does \(b \perp \) represent in the original best-fit problem? (Here \(V = \text{Col}(A) \).)

d) What is the best-fit line among all lines passing through the origin?
Solution.

a)
\[A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix} \]

b)
\[\hat{x} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \implies y = 4x + 1 \]

c) The minimized vector is
\[b_{\perp} = b - A\hat{x} = \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix} - \begin{pmatrix} 1 \\ 5 \\ 13 \\ 17 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ -5 \\ 3 \end{pmatrix}. \]
This is the vector of vertical distances from the data points to the graph of the best-fit line, drawn in red in the picture.

d) Using \(y = Cx \) means solving the least-squares problem
\[\begin{pmatrix} 0 \\ 1 \\ 3 \\ 4 \end{pmatrix} C = \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix} \implies C = \frac{56}{13}. \]
The best-fit line is \(y = \frac{56}{13}x \).
Problem 4.

A line V and a vector b are drawn below. Draw and label:

a) The orthogonal projection b_V.

b) The projection onto the orthogonal complement $b_{V\perp}$.

c) The vector $b - 2b_{V\perp}$.
Problem 5. [20 points]

Find a basis of the orthogonal complement of each of the following subspaces.

a) \(\text{Nul} \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 1 \end{pmatrix} \)

b) \(\text{Col} \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 3 & 0 \\ 4 & -1 \end{pmatrix} \)

c) The subspace of all vectors in \(\mathbb{R}^4 \) whose entries sum to zero.

d) The line \(\{(t, 2t, 3t): t \in \mathbb{R}\} \).

e) \(\mathbb{R}^3 \)

Solution.

These are the bases you would obtain if you did the problem the same way I did.

\[
\begin{align*}
a) & \quad \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 4 \\ 1 \end{pmatrix} \right\} \\
b) & \quad \left\{ \begin{pmatrix} -3 \\ -6 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -4 \\ -9 \\ 0 \\ 1 \end{pmatrix} \right\} \\
c) & \quad \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \\
d) & \quad \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \right\} \\
e) & \quad \{\} \\
\end{align*}
\]
Problem 6. [16 points]

a) Let A be an $m \times n$ matrix of rank r. Which of the following statements are equivalent to “A has full row rank”?

1. $\text{Nul}(A^T) = \{0\}$
2. $n = r$
3. $\text{Col}(A) = \mathbb{R}^m$
4. A has linearly independent columns
5. A has a pivot in every row
6. A is invertible
7. $Ax = b$ is consistent for every vector b

b) Explain why the projection matrix P_V onto a subspace V can be written as QQ^T for some matrix Q with orthonormal columns. (What is Q in terms of V?)

c) Find three nonzero vectors $v_1, v_2, v_3 \in \mathbb{R}^3$ such that $\{v_1, v_2, v_3\}$ is linearly dependent, but v_3 is not in $\text{Span}\{v_1, v_2\}$. Be sure to label which is v_3.

d) Give an example of a 4×4 matrix A such that $\text{Nul}(A) = \text{Row}(A)$, or explain why no such matrix exists.

Solution.

a) (1),(3),(5),(7)

b) Choose an orthonormal basis for V, then let Q be the matrix with those columns.

c) There are many answers. One is

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \quad v_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

d) This is impossible since $\text{Nul}(A) = \text{Row}(A)^\perp$.