1. **Some simple examples**

For each of the following matrices \(A \),

i) Find the characteristic polynomial \(p(\lambda) = \det(A - \lambda I_2) \).

ii) Find all the eigenvalues by solving \(p(\lambda) = 0 \).

iii) For each eigenvalue \(\lambda_i \), find a basis of the associated eigenspace \(\text{Nul}(A - \lambda_i I_2) \).

iv) An \(n \times n \) matrix \(A \) is diagonalizable if and only if the dimensions of the eigenspaces add up to \(n \). For these matrices, you may have one or two eigenspaces, depending on how many different roots \(p(\lambda) \) has.

Is the matrix \(A \) diagonalizable? Is the matrix \(A \) diagonal?

\[
a) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad b) \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \quad c) \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad d) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\
e) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad f) \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \quad g) \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}
\]
2. **A 2×2 diagonalization**

Consider the matrix $A = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix}$.

a) Compute the characteristic polynomial $p(\lambda) = \det(A - \lambda I_2)$.

b) Using the quadratic formula, find the two solutions to $p(\lambda) = 0$. The two solutions, λ_1 and λ_2, are the two eigenvalues of A.

c) Find the eigenvector $v_1 = (x_1, y_1)$ by solving the eigenvector equation

$$\begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} - \lambda_1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = 0$$

Note that there is more than one solution—choose any non-zero solution.

d) Find the eigenvector $v_2 = (x_2, y_2)$ by solving the eigenvector equation

$$\begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} - \lambda_2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = 0$$

e) Diagonalize A, by making a matrix of eigenvalues $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, a matrix of eigenvectors $C = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, and confirming that $A = CDC^{-1}$ by multiplying these three matrices.

f) Compute the vector $A^n(1, 2)$.

Hint: Find scalars c_1, c_2 so that $(1, 2) = c_1 v_1 + c_2 v_2$. It may help to use the matrix C^{-1} to do this. Then use the formula $A^n(1, 2) = c_1 A^n v_1 + c_2 A^n v_2$.

g) When n is very large, $\|A^{n+1}(1, 2)\|/\|A^n(1, 2)\|$ is approximately _____.

h) When n is very large, $\|A^{n+1}(1, 1)\|/\|A^n(1, 1)\|$ is approximately _____. (This should be easier than g.)

i) If you were given a random vector w, what would you expect $\|A^{n+1} w\|/\|A^n w\|$ to approximate when n is very large?
3. **Some 3 × 3 characteristic polynomials**

Compute the characteristic polynomials and eigenvalues of the matrices

\[
A = \begin{pmatrix}
0 & 1 & -1 \\
-1 & 2 & -1 \\
-1 & 1 & 0 \\
\end{pmatrix}, \quad B = \begin{pmatrix}
-1 & 2 & -1 \\
-2 & 3 & -1 \\
-1 & 1 & 0 \\
\end{pmatrix}.
\]

Decide if each matrix is diagonalizable, and if it is, diagonalize it.
4. Traces and determinants

Recall that the trace \(\text{Tr}(A) \) is the sum of the diagonal entries of \(A \).

a) For each of the matrices in problem 1(a)–(f), factor \(p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \).
Verify that
\[
\text{Tr}(A) = \lambda_1 + \lambda_2 \quad \text{and} \quad \det(A) = \lambda_1 \cdot \lambda_2.
\]

b) For any \(n \times n \) matrix, the polynomial \(p(\lambda) = \det(A - \lambda I_n) \) can be factored as
\[
p(\lambda) = (-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n).
\]
Verify that
\[
\det(A) = \lambda_1 \cdots \lambda_n.
\]
Hint: What happens to \(\det(A - \lambda I_n) \) when you set \(\lambda = 0 \)? What happens to \((-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n) \) when you set \(\lambda = 0 \)?

c) The determinant \(\det(A) \) has another product formula:
\[
\det(A) = (-1)^k d_1 \cdots d_n,
\]
when the \(A \) has REF with pivot entries \(d_1, \ldots, d_n \), found using Gaussian elimination w/o row scaling and with \(k \) row swaps. Even though this formula looks quite similar to the formula of b), eigenvalues and pivots are not at all the same.

Find an example of a \(2 \times 2 \) matrix where the pivots \(d_1, d_2 \) are not the same as the eigenvalues \(\lambda_1, \lambda_2 \).

d) (Challenge) For any \(n \times n \) matrix, show that \(\text{Tr}(A) = \lambda_1 + \cdots + \lambda_n \).