1. **Projection matrices for lines**

 For each of the following lines L, compute the projection matrix P_L.

 a) $L = \text{Span}\{(1, 1)\}$,

 b) $L = \text{Span}\{(1, 2, 3)\}$,

 c) $L = \{(x, y, z) \in \mathbb{R}^3 : 2x + y + z = 0\}^\perp$.
2. **Projection matrices for planes**

Consider the plane

\[V = \text{Span}\{(1, 1, 1, 1), (1, 2, 3, 4)\} \]

in \(\mathbb{R}^4 \).

a) Compute the projection matrix \(P_V \) for the subspace \(V \) – this is the matrix which, when multiplied with a vector \(b \), produces the projection \(b_V \):

\[P_V b = b_V. \]

(Feel free to use a computer to help with the matrix multiplications in the formula \(P_V = A(A^T A)^{-1}A^T \) if you are finding it tedious.)

b) Compute the vectors \((I_4 - P_V)\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}\) and \((I_4 - P_V)\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}\). Explain why these two vectors give a basis for the plane \(V^\perp \).

c) Use your answer to b) to describe the plane \(V \) via two implicit equations:

\[V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 = 0 \text{ and } c_1' x_1 + c_2' x_2 + c_3' x_3 + c_4' x_4 = 0\}. \]

In other words, what coefficient vectors \((c_1, c_2, c_3, c_4)\) and \((c_1', c_2', c_3', c_4')\) can we use to describe \(V \), and why? Confirm that every vector in \(V \) satisfies these equations by checking that both \((1, 1, 1, 1)\) and \((1, 2, 3, 4)\) do.
3. Some mistakes to avoid

A false “fact”: every projection matrix \(P = A(A^T A)^{-1} A^T \) equals the identity matrix \(I \).

A false “proof”:

\[
P = A(A^T A)^{-1} A^T = AA^{-1}(A^T)^{-1}A^T = (AA^{-1})((A^T)^{-1}A^T) = I \cdot I = I.
\]

a) What is wrong with this proof?

b) In what case would this proof be correct?

Consider the subspace \(V = \text{Span}\{(1, 1, 1, -1), (2, 1, 1, 2), (3, 2, 2, 1)\} \) in \(\mathbb{R}^4 \). \(V \) is the column space of the matrix

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
-1 & 2 & 1
\end{pmatrix}.
\]

c) It would be incorrect to say that \(P = A(A^T A)^{-1} A^T \) is the projection matrix for \(V \). Why?

Hint: Try computing \(P \) - what goes wrong?

d) Find a matrix \(B \) so that \(P = B(B^T B)^{-1} B^T \) is the projection matrix for \(V \) – you do not need to compute \(B \).