1. For each matrix A and vector b, and express the solution set in the form

 \[p + \text{Span}\{??\} \]

 for some vector p. For instance,

 \[
 \begin{pmatrix}
 1 & -1 \\
 2 & -2 \\
 \end{pmatrix}
 \begin{pmatrix}
 x_1 \\
 x_2 \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 1 \\
 2 \\
 \end{pmatrix}
 \implies
 \begin{pmatrix}
 0 \\
 1 \\
 \end{pmatrix}
 +
 \text{Span}\left\{ \begin{pmatrix}
 1 \\
 1 \\
 \end{pmatrix} \right\}.
 \]

 [Hint: You found the parametric vector form in Problem 8 of Homework 3.]

 a) \hspace{1cm} A = \begin{pmatrix} 2 & 1 & 1 & 4 \\ 4 & 2 & 1 & 7 \end{pmatrix} \hspace{0.5cm} b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}

 b) \hspace{1cm} A = \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \hspace{0.5cm} b = \begin{pmatrix} 3 \\ 2 \\ 49 \end{pmatrix}

 c) \hspace{1cm} A = \begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ -2 & -4 & -5 & 4 & 1 \\ 1 & 2 & 2 & -3 & -1 \\ -3 & -6 & -7 & 7 & 6 \end{pmatrix} \hspace{0.5cm} b = \begin{pmatrix} 2 \\ 4 \\ -6 \\ 10 \end{pmatrix}

 d) \hspace{1cm} A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \hspace{0.5cm} b = \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix}

2. For each matrix A in Problem 1, write the solution set of $Ax = 0$ as a span. Does there exist a nontrivial solution? Do not do Gauss–Jordan elimination again!

3. When is the following system consistent?

 \[
 \begin{align*}
 2x_1 + 2x_2 & - x_3 = b_1 \\
 -4x_1 - 5x_2 + 5x_3 & = b_2 \\
 6x_1 + x_2 + 12x_3 & = b_3
 \end{align*}
 \]

 Your answer should be a single linear equation in b_1, b_2, b_3. Explain the relationship between this equation and

 \[\text{Span} \left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \right\}. \]

4. Suppose that A is a 2×3 matrix such that

 \[
 A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \text{and} \quad A \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.
 \]

 a) Find two different solutions of $Ax = 0$.
b) Find two more solutions of \(Ax = \begin{pmatrix} -1 \end{pmatrix} \).

5. Suppose that \(Ax = b \) is consistent. Explain why \(Ax = b \) has a unique solution precisely when \(Ax = 0 \) has only the trivial solution.

6. Give geometric descriptions of the following spans (line, plane, ...).

 a) Span \(\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \)
 b) Span \(\begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \)
 c) Span \(\begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -6 \end{pmatrix} \)
 d) Span \(\begin{pmatrix} -4 \\ -5 \\ 6 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \)
 e) Span \(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \)

 [Hint: for d), compare Problem 3.]

7. a) List five nonzero vectors contained in \(\text{Span} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \).

 b) Is \(\begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix} \) contained in \(\text{Span} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \)?

 If so, express \(\begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix} \) as a linear combination of \(\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \).

 c) Show that \(\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \) is contained in \(\text{Span} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \).

 d) Describe \(\text{Span} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \) geometrically.

 e) Find a vector not contained in \(\text{Span} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \).

8. Decide if each statement is true or false, and explain why.

 a) A vector \(b \) is a linear combination of the columns of \(A \) if and only if \(Ax = b \) has a solution.

 b) There is a matrix \(A \) such that \(Ax = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \) has infinitely many solutions and \(Ax = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \) has exactly one solution.

 c) The zero vector is contained in every span.
d) The matrix equation $Ax = 0$ can be consistent or inconsistent, depending on what A is.

e) If the zero vector is a solution of a system of equations, then the system is homogeneous.

f) If $Ax = b$ has a unique solution, then A has a pivot in every column.

g) If $Ax = b$ is consistent, then the solution set of $Ax = b$ is obtained by translating the solution set of $Ax = 0$.

h) It is possible for $Ax = b$ to have exactly 13 solutions.

9. Find a spanning set for the null space of each matrix, and express the null space as the column space of some other matrix.

$$
\begin{align*}
\text{a)} & \quad \begin{pmatrix} 2 & 1 & 1 & 4 \\ 4 & 2 & 1 & 7 \end{pmatrix} \\
\text{b)} & \quad \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \\
\text{c)} & \quad \begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ -2 & -4 & -5 & 4 & 1 \\ 1 & 2 & 2 & -3 & -1 \\ -3 & -6 & -7 & 7 & 6 \end{pmatrix} \\
\text{d)} & \quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}
\end{align*}
$$

[Hint: Compare Problem 2.]
10. Draw pictures of the null space and the column space of the following matrices. Be precise!

\[A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} : \]

\[Nul(A) \quad Col(A) \]

\[A = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} : \]

\[Nul(A) \quad Col(A) \]

\[A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} : \]

\[Nul(A) \quad Col(A) \]

11. Give examples of subsets \(V \) of \(\mathbb{R}^2 \) such that:
 a) \(V \) is closed under addition and contains 0, but is not closed under scalar multiplication.
 b) \(V \) is closed under scalar multiplication and contains 0, but is not closed under addition.
 c) \(V \) is closed under addition and scalar multiplication, but does not contain 0. Therefore, none of these conditions is redundant.

12. Which of the following subsets of \(\mathbb{R}^3 \) are subspaces? If it is not a subspace, why not? If it is, write it as the column space or null space of some matrix.
 a) The plane \(\{(x, y, x) : x, y \in \mathbb{R}\} \).
 b) The plane \(\{(x, y, 1) : x, y \in \mathbb{R}\} \).
 c) The set consisting of all vectors \((x, y, z)\) such that \(xy = 0\).
 d) The set consisting of all vectors \((x, y, z)\) such that \(x \leq y\).
e) The span of (1, 2, 3) and (2, 1, −3).

f) The solution set of the system of equations \[
\begin{align*}
x + y + z &= 0 \\
x - 2y - z &= 0.
\end{align*}
\]

g) The solution set of the system of equations \[
\begin{align*}
x + y + z &= 0 \\
x - 2y - z &= 1.
\end{align*}
\]

13. Give a geometric description of the following column spaces (line, plane, …).

a) \(\text{Col} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \)

b) \(\text{Col} \begin{pmatrix} 0 & 0 \\ 1 & -2 \\ 3 & 1 \end{pmatrix} \)

c) \(\text{Col} \begin{pmatrix} 0 & 0 \\ 1 & -2 \\ 3 & -6 \end{pmatrix} \)

d) \(\text{Col} \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \)

e) \(\text{Col} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \)

[Hint: Compare Problem 6.]

14. Find a nonzero \(2 \times 2 \) matrix such that \(A^2 = 0 \).

15. a) Explain why \(\text{Col}(AB) \) is contained in \(\text{Col}(A) \).

b) Give an example where \(\text{Col}(AB) \neq \text{Col}(A) \). Can you take \(A = B \)?

[Hint: use Problem 14.]

16. a) Explain why \(\text{Nul}(AB) \) contains \(\text{Nul}(B) \).

b) Give an example where \(\text{Nul}(AB) \neq \text{Nul}(B) \). Can you take \(A = B \)?

[Hint: use Problem 14.]

17. a) If \(\text{Col}(B) \) is contained in \(\text{Nul}(A) \), then \(AB = \) ________.

b) Find a \(2 \times 2 \) matrix \(A \) such that \(\text{Col}(A) = \text{Nul}(A) \). What is the rank of such a matrix? [Hint: use Problem 14.]

18. Find a matrix \(A \) such that

\[
\text{Col}(A) = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} \right\} \quad \text{and} \quad \text{Nul}(A) = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}.
\]

What is the rank of \(A \)?

19. For the following matrix \(A \), compute the reduced row echelon form of \(A \) and of \(A^T \). Do they have the same free variables? Do they have the same rank?

\[
A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 4 & 5 & 6 \end{pmatrix}
\]
20. Decide if each statement is true or false, and explain why.
 a) The null space of an $m \times n$ matrix with n pivots is \mathbb{R}^n.
 b) If $\text{Col}(A) = \{0\}$, then A is the zero matrix.
 c) The column space of $2A$ equals the column space of A.
 d) The null space of $A + B$ contains the null space of A.
 e) If U is an echelon form of A, then $\text{Nul}(U) = \text{Nul}(A)$.
 f) If U is an echelon form of A, then $\text{Col}(U) = \text{Col}(A)$.