Homework #1
due Monday, August 30, at 11:59pm

1. Consider the vectors
 \[v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad w = \begin{pmatrix} -1 \\ 1 \end{pmatrix}. \]
 Draw the 16 linear combinations \(cv + dw \) (\(c, d = -1, 0, 1, 2 \)) in the \(xy \)-plane.

2. Certain vectors \(v, w \) in \(\mathbb{R}^2 \) are drawn below. Express each of \(b_1, b_2, b_3, b_4, b_5 \) as a linear combination of \(v, w \).

![Diagram](image)

3. If
 \[v + w = \begin{pmatrix} -4 \\ 1 \end{pmatrix} \quad \text{and} \quad v - w = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \]
 compute and draw the vectors \(v \) and \(w \).

4. Consider the vectors
 \[u = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}, \quad w = \begin{pmatrix} 8 \\ -6 \\ -2 \end{pmatrix}. \]
 a) Compute \(u + v + w \) and \(u + 2v - w \).
 b) Find numbers \(x \) and \(y \) such that \(w = xu + yv \).
 c) Explain why every linear combination of \(u, v, w \) is also a linear combination of \(u \) and \(v \) only.
 d) The sum of the coordinates of any linear combination of \(u, v, w \) is equal to _____?
 e) Find a vector in \(\mathbb{R}^3 \) that is not a linear combination of \(u, v, w \).
5. Consider the vectors

\[u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \]

Draw a picture of all of the linear combinations \(au + bv \) for real numbers \(a, b \) satisfying \(0 \leq a \leq 1 \) and \(0 \leq b \leq 1 \).

6. Consider the vectors pointing towards the numbers on a clock:

\[\text{2:00} \]

a) What is the sum of all twelve of these vectors?

b) If the 2:00 vector is removed, why do the remaining vectors add to 8:00?

7. Find two different triples \((x, y, z)\) such that

\[x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 1 \\ -2 \end{pmatrix} + z \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}. \]

How many such triples are there?

8. Decide if each statement is true or false, and explain why.

a) The vector \(\frac{1}{2} v \) is a linear combination of \(v \) and \(w \).

b) \(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \).

c) If \(v, w \) are two vectors in \(\mathbb{R}^2 \), then any other vector \(b \) in \(\mathbb{R}^2 \) is a linear combination of \(v \) and \(w \).

9. Consider the following vectors:

\[u = \begin{pmatrix} -0.6 \\ .8 \end{pmatrix}, \quad v = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \quad w = \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \]

a) Compute the lengths \(\|u\|, \|v\|, \) and \(\|w\| \).

b) Compute the lengths \(\|2u\|, \| -v\|, \) and \(\|3w\| \).

c) Find the unit vectors in the directions of \(u, v, \) and \(w \).
d) Compute the dot products \(u \cdot v, u \cdot w, \) and \(v \cdot w \). Verify that they are the same as \(v \cdot u, w \cdot u, \) and \(w \cdot v \), respectively.

e) Check the Schwartz inequalities \(|u \cdot v| \leq \|u\| \|v\|\) and \(|v \cdot w| \leq \|v\| \|w\|\).

f) Find the angles between \(u \) and \(v \) and between \(v \) and \(w \).

g) Find the distance from \(v \) to \(w \).

h) Find unit vectors \(u', v', w' \) orthogonal to \(u, v, w \), respectively.

10. Suppose that \(v \) and \(w \) are unit vectors. Compute the following dot products (your answers will be actual numbers):

\[
\begin{align*}
\text{a) } v \cdot (-v) & \quad \text{b) } (v + w) \cdot (v - w) & \quad \text{c) } (v + 2w) \cdot (v - 2w).
\end{align*}
\]

11. Decide if each statement is true or false, and explain why.

\[
\begin{align*}
a) \text{ If } u = (1, 1, 1) \text{ is orthogonal to } v \text{ and to } w, \text{ then } v \text{ is parallel to } w. \\
b) \text{ If } u \text{ is orthogonal to } v + w \text{ and to } v - w, \text{ then } u \text{ is orthogonal to } v \text{ and } w. \\
c) \text{ If } u \text{ and } v \text{ are orthogonal unit vectors then } \|u - v\| = \sqrt{2}. \\
d) \text{ If } \|u\|^2 + \|v\|^2 = \|u + v\|^2, \text{ then } u \text{ and } v \text{ are orthogonal.}
\end{align*}
\]

12. Find nonzero vectors \(v \) and \(w \) that are orthogonal to \((1, 1, 1)\) and to each other.

13. What is the length of the vector \(v = (1, 1, \ldots, 1) \) in \(n \) dimensions?

14. If \(\|v\| = 5 \) and \(\|w\| = 3 \), what are the smallest and largest possible values of \(\|v - w\| \)? What are the smallest and largest possible values of \(v \cdot w \)? Justify your answer using the algebra of dot products.

15. \[\begin{align*}
a) \text{ If } v \cdot w < 0, \text{ what does that say about the angle between } v \text{ and } w? \\
b) \text{ Find three vectors } u, v, w \text{ in the } xy\text{-plane such that } u \cdot v < 0, u \cdot w < 0, \text{ and } v \cdot w < 0.
\end{align*} \]

16. Compute the following matrix-vector products using both the row-first and column-first methods. If the product is not defined, explain why.

\[
\begin{align*}
\begin{pmatrix} 2 \\ 5 \\
-3 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \\ 3 \\ 2 \end{pmatrix} & \quad \begin{pmatrix} 1 \\ 0 \\ 3 \\ 2 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \\ -1 \\ -2 \end{pmatrix} & \quad \begin{pmatrix} 7 \\ 3 \\ 3 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ -3 \\ 1 \end{pmatrix} \\
\begin{pmatrix} -2 \\ 2 \\ 4 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \end{pmatrix} & \quad \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \\ 0 \end{pmatrix} & \quad \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix}
\end{align*}
\]
17. Suppose that \(u = (x, y, z) \) and \(v = (a, b, c) \) are vectors satisfying \(2u + 3v = 0 \). Find a nonzero vector \(w \) in \(\mathbb{R}^2 \) such that
\[
\begin{pmatrix} x & a \\ y & b \\ z & c \end{pmatrix} w = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
\]

18. Consider the matrices
\[
A = \begin{pmatrix} 2 & 1 & -1 \\ 4 & -4 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 5 & 3 & 2 \\ 1 & -1 & 2 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}
\]
\[
D = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \quad E = \begin{pmatrix} -3 & 5 \end{pmatrix}.
\]
Compute the following expressions. If the result is not defined, explain why.
- a) \(-3A\)
- b) \(B - 3A\)
- c) \(AC\)
- d) \(B^2\)
- e) \(A + 2B\)
- f) \(C - E\)
- g) \(EB\)
- h) \(D^2\)

19. Compute the product
\[
\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 4 & -1 & 2 \end{pmatrix}
\]
in three ways:
- a) Using the “column first” method.
- b) Using the “rows first” method.
- c) Using the outer product form.

20. Consider the matrices
\[
A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 \\ -1 & h \end{pmatrix}.
\]
What value(s) of \(h \), if any, will make \(AB = BA \)?

21. Consider the matrices
\[
A = \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix} \quad B = \begin{pmatrix} -4 & -8 \\ 5 & 8 \end{pmatrix} \quad C = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}.
\]
Verify that \(AC = BC \) and yet \(A \neq B \).

22. For the following matrices \(A \) and \(B \), compute \(AB, A^T, B^T, B^T A^T \), and \((AB)^T\). Which of these matrices are equal and why? Why can't you compute \(A^T B^T \)?
\[
A = \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 & -1 \\ 4 & -1 & 2 \end{pmatrix}.
\]

23. In the table below, a linear system is expressed as a system of equations, as a matrix equation, or as an augmented matrix. Fill in the blank entries.
Consider the following system of equations:

\[\begin{align*}
3x_1 + 2x_2 + 4x_3 &= 9 \\
-x_1 + 4x_3 &= 2
\end{align*} \]

\[
\begin{pmatrix}
3 & -5 \\
2 & 4 \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} =
\begin{pmatrix}
1 \\
1 \\
2
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 1 & 1 & | & 2 \\
0 & 3 & -1 & -2 & | & 4 \\
1 & -3 & -4 & -3 & | & 2 \\
6 & 5 & -1 & -8 & | & 1
\end{pmatrix}
\]

24. Consider the following system of equations:

\[\begin{align*}
x_1 - 2x_2 + x_3 &= 1 \\
-2x_1 + 5x_2 + 5x_3 &= 2 \\
3x_1 - 7x_2 - 7x_3 &= 2
\end{align*} \]

a) Use row operations to eliminate \(x_1\) from all but the first equation.

b) Use row operations to modify the system so that \(x_2\) only appears in the first and second equations (and \(x_1\) still only appears in the first).

c) Solve for \(x_3\), then for \(x_2\), then for \(x_1\). What is the solution?

25. The matrix below can be transformed into row echelon form using exactly two row operations. What are they?

\[
\begin{pmatrix}
2 & 4 & -2 & 4 \\
-1 & -2 & 1 & -2 \\
0 & 2 & 0 & 3
\end{pmatrix}
\]