MATH 218D-1
MIDTERM EXAMINATION 3

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages**. You may use other scratch paper, but the graders will not see anything written there.
- You may use a **calculator** for doing arithmetic, but you should not need one. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!
Problem 1. [20 points]

Compute the determinants of the following matrices.

a) \(\det \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
\end{pmatrix} \) =

b) \(\det \begin{pmatrix}
5 & 0 & 0 \\
-3 & 0 & 0 \\
8 & 5 & -1 \\
\end{pmatrix} \) =

c) \(\det \begin{pmatrix}
2 & 1 & 1 & 0 \\
0 & 2 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 7 \\
0 & 0 & 0 & 1 \\
\end{pmatrix} \) =

d) \(\det \begin{pmatrix}
1 & -2 & 3 \\
2 & 0 & -6 \\
1 & 0 & -3 \\
\end{pmatrix} \) =

Problem 2. [20 points]

Consider the matrix
\[A = \frac{1}{10} \begin{pmatrix} 11 & -3 \\ -3 & 19 \end{pmatrix}. \]

a) Find the eigenvalues of \(A \) and orthonormal eigenvectors.

\[\lambda_1 = \quad w_1 = \begin{pmatrix} \quad \\ \end{pmatrix} \]
\[\lambda_2 = \quad w_2 = \begin{pmatrix} \quad \\ \end{pmatrix} \]

b) Draw the eigenspaces of \(A \) in the grid below, and label them with the corresponding eigenvalues. Be precise!

c) Vectors \(v \) and \(w \) are shown in the picture. Draw and label the vectors
\[v_\infty = \lim_{k \to \infty} \frac{A^k v}{\|A^k v\|} \quad \text{and} \quad w_\infty = \lim_{k \to \infty} \frac{A^k w}{\|A^k w\|}. \]
Problem 3. [20 points]

In this problem, you need not explain your answers; just write them in the spaces provided.

Let A be an $n \times n$ matrix.

a) Which one of the following statements is correct?

1. An eigenvector of A is a vector v such that $Av = \lambda v$ for a nonzero scalar λ.
2. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a scalar λ.
3. An eigenvector of A is a nonzero scalar λ such that $Av = \lambda v$ for some vector v.
4. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a nonzero scalar λ.

b) Which one of the following statements is not correct?

1. An eigenvalue of A is a scalar λ such that $A - \lambda I$ is not invertible.
2. An eigenvalue of A is a scalar λ such that $(A - \lambda I)v = 0$ has a solution.
3. An eigenvalue of A is a scalar λ such that $Av = \lambda v$ for a nonzero vector v.
4. An eigenvalue of A is a scalar λ such that $\det(A - \lambda I) = 0$.

c) Which of the following 3×3 matrices are necessarily diagonalizable over the real numbers? (List all that apply.)

1. A matrix with three distinct real eigenvalues.
2. A symmetric matrix with two real eigenvalues.
3. A matrix with a real eigenvalue λ of algebraic multiplicity 2, such that the λ-eigenspace has dimension 2.
4. A matrix with a real eigenvalue λ such that the λ-eigenspace has dimension 2.

d) Give an example of a 2×2 matrix that is neither invertible nor diagonalizable.

\[
\begin{pmatrix}
& \\
& \\
& \\
\end{pmatrix}
\]
Problem 4.

20 points

a) Compute the characteristic polynomial of the following matrix. Do not factor it!

\[
\begin{pmatrix}
3 & 0 & 1 \\
-1 & 2 & 0 \\
2 & 2 & 4
\end{pmatrix}
\implies p(\lambda) = \text{[Enter polynomial here]}
\]
b) Consider the matrix

\[
A = \begin{pmatrix}
3 & 7 & -11 \\
6 & 22 & -33 \\
4 & 14 & -21
\end{pmatrix}.
\]

The eigenvalues of \(A \) are \(\lambda_1 = 1 \) and \(\lambda_2 = 2 \). Find an invertible matrix \(C \) and a diagonal matrix \(D \) such that \(A = C D C^{-1} \).

\[
C = \begin{pmatrix}
\end{pmatrix}, \\
D = \begin{pmatrix}
\end{pmatrix}
\]

c) In part b), is it possible to find an orthogonal matrix \(Q \) and a diagonal matrix \(D \) such that \(A = QDQ^T \)? Why or why not?
Problem 5. [20 points]

Consider the following initial value problem:
\[u'_1 = 2u_1 - u_2 \quad u_1(0) = 2 \]
\[u'_2 = 3u_1 - u_2 \quad u_2(0) = 3. \]

a) Let \(u(t) = (u_1(t), u_2(t)) \). Find the matrix \(A \) such that \(u' = Au \).

\[
A = \begin{pmatrix}
\end{pmatrix}
\]

b) Find the eigenvalues of \(A \).

\[
\lambda = \quad \bar{\lambda} = \quad \lambda = \quad \bar{\lambda} =
\]

c) For each eigenvalue \(\lambda_i \), find the corresponding eigenvector \(w_i \) whose first coordinate is 1.

\[
w = \begin{pmatrix}
1
\end{pmatrix}
\quad \bar{w} = \begin{pmatrix}
1
\end{pmatrix}
\]
d) Express $u(0) = (2, 3)$ as a linear combination of the eigenvectors you found in c).

\[
\begin{pmatrix} 2 \\ 3 \end{pmatrix} = w + \bar{w}.
\]

e) Solve the initial value problem $u' = Au$, $u(0) = (2, 3)$. Your answer should involve only real numbers.

\[
\begin{align*}
u_1 &= \\
u_2 &=
\end{align*}
\]