Please read all instructions carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the printed pages. You may use other scratch paper, but the graders will not see anything written there.
- You may use a calculator for doing arithmetic, but you should not need one. All other materials and aids are strictly prohibited.
- For full credit you must show your work so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

\[
\begin{bmatrix}
\cos 90^\circ & \sin 90^\circ \\
-sin 90^\circ & \cos 90^\circ
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

[Hint: this is a joke.]
Problem 1. [20 points]

Consider the plane

\[V = \{(x, y, z) : x - y + 2z = 0\}. \]

a) Find a basis for \(V \).

b) Find an orthogonal basis for \(V \).

c) Use the projection formula and your answer to part b) to compute the orthogonal projection \(b_V \) of the vector \(b = (1, 1, -3) \) onto \(V \).

\[b_V = \begin{pmatrix} \end{pmatrix} \]

d) Find a basis for \(V^\perp \).

e) Find an orthogonal basis of \(\mathbb{R}^3 \) containing the basis vectors you found in b).
Problem 2. [20 points]

Consider the matrix

\[
A = \begin{pmatrix}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{pmatrix}
\]

a) Find the QR decomposition of \(A \). You should get

\[
R = \begin{pmatrix}
p \sqrt{5} & -p & 4p \\
0 & 6 & -2 \\
0 & 0 & 4
\end{pmatrix}
\]

\[
Q = \begin{pmatrix}
\end{pmatrix}
\]
b) Solve \(R \hat{x} = Q^T \begin{pmatrix} 2 \\ -2 \\ 4 \\ -3 \\ 3 \end{pmatrix} \) to find the least-squares solution of \(Ax = \begin{pmatrix} 2 \\ -2 \\ 4 \\ -3 \\ 3 \end{pmatrix} \).

\[
\hat{x} = \begin{pmatrix} \\
\end{pmatrix}
\]

c) Compute the matrix \(P_V \) for projection onto \(V = \text{Col}(A) \).

\[
P_V = \begin{pmatrix} \\
\end{pmatrix}
\]
Problem 3. [15 points]

Consider the data points

\[b_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad b_1 = \begin{pmatrix} 1 \\ 8 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 3 \\ 8 \end{pmatrix}, \quad b_3 = \begin{pmatrix} 4 \\ 20 \end{pmatrix}\]

drawn below.

a) Find the matrix \(A \) such that the least-squares solution \(\hat{x} = (C, D) \) of

\[
A \begin{pmatrix} C \\ D \end{pmatrix} = b = \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix}
\]
gives the coefficients of the best-fit line \(y = Cx + D \).

b) Find the equation of the best-fit line by computing the least-squares solution of the above equation. Graph this line in the above grid.

\[y = \square x + \square\]
c) Compute the minimized vector $b_{V\perp}$. What does $b_{V\perp}$ represent in the original best-fit problem? (Here $V = \text{Col}(A)$.)

\[
b_{V\perp} = \begin{pmatrix} \ \\
\end{pmatrix}
\]

d) What is the best-fit line among all lines passing through the origin?

\[y = \square x\]
Problem 4. [12 points]

A line V and a vector b are drawn below. Draw and label:

a) The orthogonal projection b_V.

b) The projection onto the orthogonal complement $b_{V\perp}$.

c) The vector $b - 2b_{V\perp}$.
Problem 5.

Consider the vectors

\[
\begin{align*}
\mathbf{v}_1 &= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\
\mathbf{v}_2 &= \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \\
\mathbf{v}_3 &= \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \\
\mathbf{v}_4 &= \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}
\end{align*}
\]

and the subspace \(W = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\} \).

[Hint: in this problem it is helpful, but not necessary, to use the fact that \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \) is orthogonal.]

a) Find a linear relation among \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \).

b) What is the dimension of \(W \)?
\[\dim(W) = \square \]

c) List all subsets of \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\} \) that form a basis for \(W \).
Problem 6. [16 points]

All of the following statements are false. Find a counterexample.

a) If Q has orthonormal columns, then QQ^T is the identity matrix.

b) If V and W are subspaces of \mathbb{R}^n and every vector in V is orthogonal to every vector in W, then $V = W^\perp$.

c) A matrix with orthogonal columns has full row rank.

d) If A is an $m \times n$ matrix and $A^T A$ is invertible, then A has rank m.

e) If Q has orthogonal columns, then $\|Qx\| = \|x\|$ for any vector x.