Please read all instructions carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- You may use a calculator for doing arithmetic, but you should not need one. All other materials and aids are strictly prohibited.
- For full credit you must show your work so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!
Problem 1. \[25 \text{ points}\]

Consider the matrix
\[A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix}. \]

a) Use Gauss–Jordan elimination to put \(A \) into reduced row echelon form.

b) The free columns are \[\square \].

c) The rank of \(A \) is \[\square \].

d) Draw a picture of the column space \(\text{Col}(A) \) below.

![Matrix diagram]

e) Write down a vector \(b \) in \(\mathbb{R}^2 \) such that \(Ax = b \) has no solution. If no such vector exists, explain why not.

f) The null space is a (circle one) \(\text{point} \) \(\text{line} \) \(\text{plane} \) in (fill in the blank) \(\mathbb{R}^{\square} \).

g) Find the general solution of \(Ax = \begin{pmatrix} -2 \\ 4 \end{pmatrix} \) in parametric vector form.

h) Express \(\text{Nul}(A) \) as a span of some number of vectors.

i) Write down any nontrivial solution of \(Ax = 0 \).
Solution.

a) An REF is \[
\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}.
\]

b) The free columns are the second and third.

c) The rank is 1.

d)

![Matrix Diagram]

e) Any \(b \) not on this line works. For instance, \(b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \).

f) The null space is a plane in \(\mathbb{R}^3 \).

g)
\[
x = \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}
\]

h)
\[
\text{Nul}(A) = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}
\]

i) For instance, \((1, 1, 0)\).
Problem 2. [25 points]

Consider the matrix

\[A = \begin{pmatrix} 2 & 3 & 1 \\ -4 & -5 & -3 \\ -2 & -6 & 0 \end{pmatrix}. \]

a) Find a lower-unitriangular matrix \(L \) and a matrix \(U \) in REF such that \(A = LU \). You should end up with

\[U = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -2 \end{pmatrix}. \]

b) Solve the equation \(Ax = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} \) using the \(LU \) decomposition you found in a).

c) If you compute a \(PA = LU \) decomposition using maximal partial pivoting, what is \(P \)? (You do not have to do the bookkeeping to find \(L \) in this part.)

d) Find the inverse of \(A \).

Solution.

a) \[L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -3 & 1 \end{pmatrix} \]

b) \[x = \begin{pmatrix} 4 \\ -2 \\ -2 \end{pmatrix} \]

c) \[P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \]

d) \[A^{-1} = \frac{1}{4} \begin{pmatrix} 18 & 6 & 4 \\ -6 & -2 & -2 \\ -14 & -6 & -2 \end{pmatrix} \]
Problem 3. [20 points]

Consider the subspace V of \mathbb{R}^4 defined by the equations

\[\begin{align*}
x_1 + x_2 &= x_3 + x_4 \\
x_1 + x_3 &= x_2 + x_4.
\end{align*}\]

a) Express V as the null space of a matrix A.

b) Express V as the span of a set of vectors.

c) Express V as the column space of a (different) matrix B.

d) One of the following vectors is contained in V. Identify which one is contained in V, and express it as a linear combination of the vectors you found in b).

\[
\begin{pmatrix}
1 \\
4 \\
2 \\
3
\end{pmatrix}
\begin{pmatrix}
1 \\
3 \\
3 \\
1
\end{pmatrix}
\begin{pmatrix}
1 \\
3 \\
-3 \\
-1
\end{pmatrix}
\]

Solution.

a) $V = \text{Nul} \begin{pmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$

b) $V = \text{Span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$

c) $V = \text{Col} \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$

d) \[
\begin{pmatrix} 1 \\ 3 \\ 3 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}\]
Problem 4. [15 points]

Let
\[A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 5 & 6 & 7 & 8 \\ 6 & 8 & 10 & 12 \\ -9 & -10 & -11 & -12 \end{pmatrix}. \]

a) What three row operations are needed to transform \(A \) into \(B \)?

b) What are the elementary matrices \(E_1, E_2, E_3 \) for these three operations?

c) Write an equation for \(B \) in terms of \(A \) and \(E_1, E_2, E_3 \).

d) Write an equation for \(A \) in terms of \(B \) and \(E_1^{-1}, E_2^{-1}, E_3^{-1} \).

Solution.

a) First \(R_1 \leftrightarrow R_2 \), then \(R_2 += R_1 \), then \(R_3 \times = -1 \).

b) \(E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \)

c) \(B = E_3 E_2 E_1 A \)

d) \(A = E_1^{-1} E_2^{-1} E_3^{-1} B \)
Problem 5. [10 points]

Consider the subspace

\[V = \text{Span}\left\{ \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix} \right\}. \]

a) Show that \(\begin{pmatrix} -4 \\ -4 \\ -4 \end{pmatrix} \) is in \(V \).

b) Show that \(\begin{pmatrix} -4 \\ -4 \\ 4 \end{pmatrix} \) is not in \(V \).

c) Circle one: \(V \) is a point line plane space.

Solution.

a) We solve the vector equation

\[x_1 \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} + x_3 \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix} = \begin{pmatrix} -4 \\ -4 \\ -4 \end{pmatrix} \]

by row reducing an augmented matrix:

\[
\begin{pmatrix}
1 & 2 & 3 & -4 \\
4 & 5 & 6 & -4 \\
7 & 8 & 9 & -4
\end{pmatrix}
\xrightarrow{\text{RREF}}
\begin{pmatrix}
1 & 0 & -1 & 4 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

This system has infinitely many solutions, so \((-4, -4, -4) \) is in \(V \).

b) We solve the vector equation

\[x_1 \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} + x_3 \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix} = \begin{pmatrix} -4 \\ -4 \\ 4 \end{pmatrix} \]

by row reducing an augmented matrix:

\[
\begin{pmatrix}
1 & 2 & 3 & -4 \\
4 & 5 & 6 & -4 \\
7 & 8 & 9 & 4
\end{pmatrix}
\xrightarrow{\text{RREF}}
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

This system has no solutions, so \((-4, -4, 4) \) is not in \(V \).

c) Since \(V \) contains two noncollinear vectors and is not all of \(\mathbb{R}^3 \), it must be a plane.
Problem 6. [15 points]

Find examples of matrices with the following properties. If no such matrix exists, explain why not.

a) A 2×3 matrix A such that the solution set of $Ax = 0$ is the line spanned by $(1, 2, 1)$ and the solution set of $Ax = \binom{2}{1}$ is the point $\{(1, 0, 0)\}$.

b) A 3×2 matrix A such that $\text{Col}(A) = \mathbb{R}^3$.

c) A 2×3 matrix A such that $\text{Col}(A) = \mathbb{R}^3$.

d) A 2×3 matrix A such that $\text{Nul}(A) = \mathbb{R}^3$.

e) An invertible 2×2 matrix such that $A\binom{1}{2} = A\binom{2}{1}$.

Solution.

a) Impossible: the solution set of $Ax = \binom{2}{1}$ is a translate of the solution set of $Ax = 0$.

b) Impossible: the two columns of A cannot span anything larger than a plane.

c) Impossible: the column space of A lives in \mathbb{R}^2.

d) The only example is the zero matrix.

e) Impossible: the equation $Ax = b$ has exactly one solution.