1. **Projection onto a line**
 For each of the following,
 (1) project the vector b onto the line $V = \text{Span}\{v\}$;
 (2) draw the three vectors $b, b_v, b_{v \perp}$;
 (3) compute the projection matrix $P = \frac{vv^T}{v^Tv}$.

 a) $b = (1, 1), \ v = (1, 0)$

 b) $b = (0, 2), \ v = (1, 1)$

 c) $b = (1, 2, 3), \ v = (1, 1, -1)$.
2. **Planes and normal vectors**

 The subspace \(V = \text{Span}\{(1, 1, 2), (1, 3, 1)\} \) of \(\mathbb{R}^3 \) is a plane.

 a) Make the vectors \((1, 1, 2), (1, 3, 1)\) into the rows of a \(2 \times 3\) matrix \(A\) - this means that \(\text{Row}(A) = V\). Find a basis for \(\text{Nul}(A)\). Since

 \[
 V^\perp = \text{Row}(A)^\perp = \text{Nul}(A),
 \]

 you have found a basis \(v = (a, b, c) \) for the line \(V^\perp\).

 In other words, you have found a basis for \(V^\perp \) by solving the two orthogonality equations

 \[
 (a, b, c) \cdot (1, 1, 2) = a + b + 2c = 0,
 \]

 \[
 (a, b, c) \cdot (1, 3, 1) = a + 3b + c = 0.
 \]

 b) Confirm that \(V \) is the plane \(\{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\} \), by showing that both \((1, 1, 2)\) and \((1, 3, 1)\) solve this equation. **The coefficients of a plane’s equation make a normal vector for the plane.**

 c) Find the orthogonal decomposition \(b = b_v + b_{V^\perp} \) of the vector \(b = (1, 1, 1) \) with respect to the plane \(V \) and the orthogonal line \(V^\perp \).

 Hint: It is easier to compute \(b_{V^\perp} \), as it is the projection of \(b \) onto the line \(V^\perp \) spanned by the vector \(v = (a, b, c) \).
3. Projection onto a plane

Consider the plane

\[V = \text{Span}\{(1, 1, 1, 1), (1, 2, 3, 4)\} \]

in \(\mathbb{R}^4 \). We will find the orthogonal projection of \(b = (1, -1, -3, -5) \) onto \(V \). This is a vector \(b_V \in \mathbb{R}^4 \) so that \(b_V \in V \) and \(b_V \perp = b - b_V \in V^\perp \).

Since \(b_V \) is in \(V \), it must equal

\[b_V = \hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4) \]

for some scalars \(\hat{x}_1 \) and \(\hat{x}_2 \). We will compute the orthogonal projection by solving for these scalars.

The vector \(b_V \perp \) is orthogonal to every vector in \(V \), in particular it is orthogonal to both \((1, 1, 1, 1) \) and \((1, 2, 3, 4) \). We get two equations:

\[
\begin{align*}
(1, 1, 1, 1) \cdot b_V \perp &= 0, \\
(1, 2, 3, 4) \cdot b_V \perp &= 0.
\end{align*}
\]

Expanding \(b_V \perp = b - b_V = (1, -1, -3, -5) - (\hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4)) \), we can rewrite these two equations as

\[
\begin{align*}
(1, 1, 1, 1) \cdot (\hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4)) &= (1, 1, 1, 1) \cdot (1, -1, -3, -5), \\
(1, 2, 3, 4) \cdot (\hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4)) &= (1, 2, 3, 4) \cdot (1, -1, -3, -5).
\end{align*}
\]

a) By computing the dot-products, convert this into two linear equations in the two unknowns \(\hat{x}_1 \) and \(\hat{x}_2 \).

b) Solve for \(\hat{x}_1 \) and \(\hat{x}_2 \), and compute the orthogonal projection

\[b_V = \hat{x}_1(1, 1, 1, 1) + \hat{x}_2(1, 2, 3, 4). \]

c) Confirm that the vector \(b_V \perp = b - b_V \) is orthogonal to \(V \) by checking that

\[b_V \perp \cdot (1, 1, 1, 1) = 0 \text{ and } b_V \perp \cdot (1, 2, 3, 4) = 0. \]

d) Write down a matrix \(A \) whose column are the two vectors which span \(V \), and compute \(A^T A \), the “matrix of dot products”. Compute the vector \(A^T b \). Explain where the matrix equation \(A^T A \hat{x} = A^T b \) (the normal equation) appears in a)-b), and also where the product \(b_V = A \hat{x} \) appears.

e) Compute the projection matrix \(P = A(A^T A)^{-1}A^T \) for the subspace \(V \).

f) Compute the vectors \((I_4 - P) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \) and \((I_4 - P) \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \). Explain why these two vectors give a basis for the plane \(V^\perp \).

g) Use your answer to f) to describe the plane \(V \) via two implicit equations:

\[V = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 = 0 \text{ and } c'_1 x_1 + c'_2 x_2 + c'_3 x_3 + c'_4 x_4 = 0 \}. \]

In other words, what coefficient vectors \((c_1, c_2, c_3, c_4) \) and \((c'_1, c'_2, c'_3, c'_4) \) can we use to describe \(V \), and why? Confirm that every vector in \(V \) satisfies these equations by checking that both \((1, 1, 1, 1) \) and \((1, 2, 3, 4) \) do.
4. Some mistakes to avoid

A false “fact”: every projection matrix \(P = A(A^T A)^{-1} A^T \) equals the identity matrix \(I \).

A false “proof”:
\[
P = A(A^T A)^{-1} A^T = AA^{-1}(A^T)^{-1} A^T = (AA^{-1})(A^T)^{-1} A^T = I \cdot I = I.
\]

a) What is wrong with this proof?

b) In what case would this proof be correct?

Consider the subspace \(V = \text{Span}\{(1, 1, 1, -1), (2, 1, 1, 2), (3, 2, 2, 1)\} \) in \(\mathbb{R}^4 \). \(V \) is the column space of the matrix
\[
A = \begin{pmatrix}
1 & 2 & 3 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
-1 & 2 & 1
\end{pmatrix}.
\]

c) It would be incorrect to say that \(P = A(A^T A)^{-1} A^T \) is the projection matrix for \(V \). Why?

Hint: Try computing \(P \) - what goes wrong?

d) How could you modify \(A \) so that \(P = A(A^T A)^{-1} A^T \) is the projection matrix for \(V \)?