1. **Solving** $Ax = b$ **using** $PA = LU$

Solve the matrix equation

\[
\begin{pmatrix}
1 & 1 & 1 \\
2 & 2 & 3 \\
1 & 2 & 3
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} =
\begin{pmatrix}
1 \\
3 \\
2
\end{pmatrix},
\]

using the $PA = LU$ decomposition

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 \\
2 & 2 & 3 \\
1 & 2 & 3
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}.
\]

a) Identify A, b, P, L, and U.

b) Compute Pb. What does P do to b?

c) Convert $Lc = Pb$ into 3 linear equations, and solve for $c = (c_1, c_2, c_3)$ using forward-substitution.

d) Convert $Ux = c$ into 3 linear equations, and solve for x using back-substitution.

e) Check your answer, by multiplying $A \cdot x$ and confirming that it equals b.

Why does this work? Starting with $Ax = b$, multiply both sides of the equation by P to get $PAx = Pb$. Since $PA = LU$, this is the same as $LUx = Pb$, which can be separated into two equations:

\[
Lc = Pb,
\]

\[
Ux = c.
\]

If you plug the second equation into the first you recover $LUx = Pb$.

2. Finding $A = LU$ and A^{-1} using elementary matrices

Consider the matrix

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -1 & 4 \\ 1 & 4 & 6 \end{pmatrix}.$$

a) Explain how to reduce A to a matrix U in REF (not RREF) using three row replacements.

b) Let E_1, E_2, E_3 be the elementary matrices for these row operations, in order. Fill in the blank with a product involving the E_i:

$$U = \ldots A.$$

c) Fill in the blank with a product involving the E_i^{-1}:

$$A = \ldots U$$

d) Evaluate that product to produce a lower-triangular matrix L with ones on the diagonal such that $A = LU$.

e) Compute L and U again, this time using the two column method. Make sure you get the same answer as before.

f) Explain how to reduce U to the 3×3 identity matrix using three more elementary matrices E_4, E_5, E_6 (scaling, followed by row replacements).

g) Fill in the blank with a product involving the E_i:

$$A^{-1} = \ldots.$$

h) Compute A^{-1} by row reducing $(A \mid I_n)$. This is exactly the same as evaluating the product above!
3. **Maximal Partial Pivoting**

Consider the linear system

\[
\begin{align*}
x_2 &= 1 \\
x_1 + x_2 &= 2.
\end{align*}
\]

Clearly the solution is \(x_1 = 1\) and \(x_2 = 1\). Let’s modify the system just a little bit:

\[
\begin{align*}
10^{-17}x_1 + x_2 &= 1 \\
x_1 + x_2 &= 2.
\end{align*}
\]

Presumably the solution \((x_1, x_2)\) will be very close to \((1, 1)\).

a) Perform Gauss–Jordan elimination on the augmented matrix

\[
\begin{pmatrix}
10^{-17} & 1 & 1 \\
1 & 1 & 2
\end{pmatrix}
\]

to solve the modified system. You should obtain

\[
\begin{align*}
x_1 &= \frac{1}{1 - 10^{-17}} \\
x_2 &= 2 - \frac{1}{1 - 10^{-17}},
\end{align*}
\]

which are indeed very close to 1.

Now let’s see if a computer can do the same. Load up linalg.js, which can be found on the course homepage, and open a Javascript console in your browser (follow the instructions on that page). Create the augmented matrix as follows:

\[
A = \text{mat}([[1e-17, 1, 1], [1, 1, 2]])
\]

In linalg.js, matrices are just arrays of arrays, so you can inspect their elements as follows:

\[
A[0][0] // 1e-17
\]

Note that Javascript arrays are indexed from zero, the above command prints the (1,1) entry.

b) Now let’s perform Gauss–Jordan elimination:

\[
\begin{align*}
&\text{A.rowReplace}(1,0,-1/A[0][0]) \\
&\text{A.rowScale}(1,1/A[1][1]) \\
&\text{A.rowReplace}(0,1,-A[0][1]/A[1][1]) \\
&\text{A.rowScale}(0,1/A[0][0])
\end{align*}
\]

The first command translates into \(R_2 \leftarrow 1/10^{-17}R_1\): the first argument to rowReplace is the row to replace (indexed from zero), the second is the row to add/subtract, and the third is the scaling factor.

c) Verify that the resulting matrix has the form

\[
\begin{pmatrix}
1 & 0 & (?) \\
0 & 1 & (?)
\end{pmatrix}
\]

d) What does the computer think \(x_1\) and \(x_2\) are? What went wrong?
e) Javascript uses IEE-754 64-bit floating point numbers. This means that they have about 16 decimal digits of precision. Try evaluating $1 + 1 \times 10^{17}$ in your console. What did you get?

The problem was that you produced enormous numbers by dividing by the tiny number 10^{-17}. When you’re doing math on a computer, you never want to divide by tiny numbers.

f) Now try performing Gauss–Jordan elimination again, after selecting the maximal pivot in the first column:

```javascript
A = mat([[1e-17, 1, 1], [1, 1, 2]])
A.rowSwap(0,1)
```

Did that work? What does the computer think x_1 and x_2 are now?
4. $PA = LU$ on a computer

The purpose of this problem is to convince you that computing a $PA = LU$ decomposition really is faster for solving $Ax = b$ for many values of b. Load up linalg.js in your browser, and open a Javascript console.

a) Let's create a 1000×1000 invertible matrix:

\[A = \text{Matrix.identity}(1000).\text{add} (\text{Matrix.constant}(1,1000)) \]

The resulting matrix is

\[
\begin{pmatrix}
2 & 1 & 1 & \cdots & 1 & 1 \\
1 & 2 & 1 & \cdots & 1 & 1 \\
1 & 1 & 2 & \cdots & 1 & 1 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 2 & 1 \\
1 & 1 & 1 & \cdots & 1 & 2
\end{pmatrix}
\]

b) Let's solve $Ax = b$ using a $PA = LU$ decomposition.

\[
A.\text{PLU()} // \text{Computes and caches a } PA=LU \text{ decomposition} \\
b = \text{Vector.constant}(1000,1) \\
\text{for}(i = 0; i < 1000; ++i) A.\text{solve}(b)
\]

This solves $Ax = (1,1,\ldots,1)$ 1000 times, using the $PA = LU$ decomposition. On my computer, both steps take a few seconds.

c) Now let's solve $Ax = b$ without using $PA = LU$.

\[
\text{for}(i = 0; i < 1000; ++i) \{ A.\text{invalidate}(); A.\text{solve}(b); \}
\]

When you run $A.\text{solve}(b)$, the library actually computes and caches the $PA = LU$ decomposition, since that's no more difficult than running Gauss–Jordan elimination anyway. The command $A.\text{invalidate}()$ clears that cache to force the library to run elimination 1000 times.

The above command crashed my browser tab.