1. A certain 2×2 matrix A has singular values $\sigma_1 = 2$ and $\sigma_2 = 1.5$. The right-singular vectors v_1, v_2 and the left-singular vectors u_1, u_2 are shown in the pictures below.

 a) Draw Ax and Ay in the picture on the right.

 b) Draw $\{Ax : \|x\| = 1\}$ (what you get by multiplying all vectors on the unit circle by A) in the picture on the right.

2. Consider the following 3×2 matrix A and its SVD:

 \[
 A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ -1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \left(\begin{array}{cc} 1 & 0 \\ \sqrt{2} & 0 \end{array} \right) \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix}^T.
 \]

 Draw $\{Ax : \|x\| = 1\}$ (what you get by multiplying all vectors on the unit sphere by A) in the picture on the right.
3. Compute the pseudoinverse of each matrix of Problem 1 on Homework 12:

 a) \(\begin{pmatrix} 8 & 4 \\ 1 & 13 \end{pmatrix} \)
 b) \(\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \)
 c) \(\begin{pmatrix} -3 & 11 \\ 10 & -2 \\ 1 & 5 \\ -4 & 6 \end{pmatrix} \)
 d) \(\begin{pmatrix} 9 & 7 & 10 & 8 \\ -13 & 1 & 5 \end{pmatrix} \)
 e) \(\begin{pmatrix} 3 & 7 & 1 & 5 \\ 3 & 1 & 7 & 5 \\ 6 & 2 & 2 & -2 \end{pmatrix} \)

4. Consider the matrix

 \(A = \begin{pmatrix} 3 & 7 & 1 & 5 \\ 3 & 1 & 7 & 5 \\ 6 & 2 & 2 & -2 \end{pmatrix} \)

 of Problem 3(e). Find the matrix \(P \) for projection onto the row space of \(A \) in two ways:
 a) Multiply out \(P = A^+A \).
 b) In Problem 2 on Homework 12 you found \(\text{Nul}(A) = \text{Span}\{v\} \) for \(v = (1, -1, -1, 1) \). Compute \(P_\perp = vv^T/v \cdot v \) and \(P = I_4 - P_\perp \).

 Your answers to a) and b) should be the same, of course!

5. Let \(A \) be an \(m \times n \) matrix.
 a) If \(A \) has full column rank, show that \(A^+A = I_n \).
 b) If \(A \) has full row rank, show that \(AA^+ = I_m \).

 In particular, a matrix with full column rank admits a left inverse, and a matrix with full row rank admits a right inverse. Compare Problem 14 on Homework 5.

6. Let \(A \) be a matrix and let \(A^+ \) be its pseudoinverse. Match the subspaces on the left to the subspaces on the right:

 \begin{align*}
 \text{Col}(A) & \quad \text{Col}(A^+) \\
 \text{Nul}(A) & \quad \text{Nul}(A^+) \\
 \text{Row}(A) & \quad \text{Row}(A^+) \\
 \text{Nul}(A^T) & \quad \text{Nul}((A^+)^T)
 \end{align*}

 What is the rank of \(A^+ \)?

7. What is the pseudoinverse of the \(m \times n \) zero matrix?

8. Consider the matrix \(A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \) of Problem 3(b).
 a) Find all least-squares solutions of \(Ax = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \) in parametric vector form.
 b) Find the shortest least-squares solution \(\hat{x} = A^+ \begin{pmatrix} 3 \\ 5 \end{pmatrix} \).
 c) Draw your answers to a) and b) on the grid below.
9. Consider the following matrix holding 5 samples of 2 measurements each:

\[
A_0 = \begin{pmatrix}
22 & -12 & 24 & -29 & 20 \\
1 & -11 & 37 & -17 & -35
\end{pmatrix}.
\]

a) Subtract the means of the rows of \(A_0\) to obtain the centered matrix \(A\).

b) Compute the covariance matrix \(S = \frac{1}{5-1}AA^T\). What is the total variance? What is the covariance of the first row with the second?

c) Find the eigenvalues \(\lambda_1, \lambda_2\) and unit eigenvectors \(v_1, v_2\) of \(S\). What line best approximates the columns of \(A\)? What line best approximates the columns of \(A_0\)?

d) Find the orthogonal projections of the columns of \(A\) onto this line by computing the first summand of the SVD of \(A\) (in vector form). (Don’t forget to rescale by \(\sqrt{5-1}\).)

e) Draw the columns of \(A\), the first best-fit line you found in c), and the orthogonal projections you found in d) on the grid below. (Grid marks are 10 units apart.)
10. An online movie-streaming service collects star ratings from its viewers and uses these to predict what movies you will like based on your previous ratings. The following are the ratings that ten (fictitious) people gave to three (fictitious) movies, on a scale of 0–10:

<table>
<thead>
<tr>
<th></th>
<th>Abe</th>
<th>Amy</th>
<th>Ann</th>
<th>Ben</th>
<th>Bob</th>
<th>Eve</th>
<th>Dan</th>
<th>Don</th>
<th>Ian</th>
<th>Meg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prognosis Negative</td>
<td>7.8</td>
<td>6.1</td>
<td>2.4</td>
<td>9.8</td>
<td>10</td>
<td>3.0</td>
<td>6.3</td>
<td>3.6</td>
<td>6.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Ponce De Leon</td>
<td>6.0</td>
<td>7.9</td>
<td>6.4</td>
<td>8.1</td>
<td>7.1</td>
<td>6.4</td>
<td>7.3</td>
<td>7.9</td>
<td>6.2</td>
<td>8.1</td>
</tr>
<tr>
<td>Lenore’s Promise</td>
<td>5.8</td>
<td>8.2</td>
<td>8.2</td>
<td>6.8</td>
<td>6.2</td>
<td>8.7</td>
<td>7.3</td>
<td>9.2</td>
<td>6.8</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Load up linalg.js or your favorite linear algebra calculator and put the data into a matrix:

```javascript
A0 = mat([[7.8, 6.1, 2.4, 9.8, 10, 3.0, 6.3, 3.6, 6.7, 6.3],
          [6.0, 7.9, 6.4, 8.1, 7.1, 6.4, 7.3, 7.9, 6.2, 8.1],
          [5.8, 8.2, 8.2, 6.8, 6.2, 8.7, 7.3, 9.2, 6.8, 8.2]])
```

Find the row averages and subtract them:

```javascript
// Multiplying by (1,1,...,1) sums the rows
averages = A0.apply(Vector.constant(10, 1)).scale(1/10)
A = A0.clone().sub(mat(averages).transpose.mult(mat(Vector.constant(10, 1))))
```

Now compute the covariance matrix:

```javascript
S = A.mult(A.transpose).scale(1/(10-1))
console.log(S.toString(2))
```

In this problem, please write your answers to two decimal places.

a) What is the variance in the number of stars given each of the three movies? What is the total variance? (Use S.trace)

b) Which entry of S tells you that people who liked Prognosis Negative generally did not like Lenore’s Promise?

Let us compute the eigenvalues of S in order, and the corresponding unit eigenvectors:

```javascript
[sigma3sq, sigma2sq, sigma1sq] = S.eigenvalues().map(x => x[0]).sort()
// Verify this is equal to S.trace
sigma1sq + sigma2sq + sigma3sq
// Compute unit eigenvectors
v1 = S.eigenspace(sigma1sq).ONbasis().transpose[0]
v2 = S.eigenspace(sigma2sq).ONbasis().transpose[0]
v3 = S.eigenspace(sigma3sq).ONbasis().transpose[0]
```
c) Which is the direction with the most variance? What is the variance in that direction?

d) Explain how these calculations tell you that 68% of the ratings are at a distance of $\sigma_3 \approx 0.18$ stars from the plane $\text{Span}\{v_1, v_2\}$.

e) Use the fact that $\{v_1, v_2, v_3\}$ is orthonormal to find an implicit equation for $\text{Span}\{v_1, v_2\}$ of the form $x_3 = a_1 x_1 + a_2 x_2$.

f) Suppose that Joe gave $\textit{Prognosis Negative}$ a rating of 8.5 and $\textit{Ponce De Leon}$ a rating of 6.2. How would you expect Joe to rate $\textit{Lenore’s Promise}$?

Remark: According to a New York Times Magazine article, this really is the idea behind Netflix’s algorithm—which earned its creator a $1\ 000\ 000$ prize.

11. Let A be a matrix with singular value decomposition

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \cdots + \sigma_r u_r v_r^T.$$

Recall from Problem 11(b) on Homework 12 that $\|Ax\|/\|x\|$ is maximized at $x = v_1$ with maximum value σ_1.

a) Show that the maximum value of $\|Ax\|/\|x\|$ subject to the condition $x \cdot v_1 = 0$ is equal to σ_2, and is achieved at $x = v_2$.

[Hint: If $x \cdot v_1 = 0$ then $Ax = A'x$ for $A' = \sigma_2 u_2 v_2^T + \sigma_3 u_3 v_3^T + \cdots + \sigma_r u_r v_r^T$.]

b) More generally, show that the maximum value of $\|Ax\|/\|x\|$ subject to the conditions $x \cdot v_1 = 0$, $x \cdot v_2 = 0$, \ldots, $x \cdot v_j = 0$ is equal to σ_{j+1}, and is achieved at $x = v_{j+1}$.

c) If A has full column rank, show that the minimum value of $\|Ax\|/\|x\|$ is equal to σ_r, and is achieved at $x = v_r$.

In the language of principal component analysis, this says that v_2 is the direction of second-largest variance, etc.

12. Decide if each statement is true or false, and explain why.

a) If A is a matrix of rank r, then A is a linear combination of r rank-1 matrices.

b) If A is a matrix of rank 1, then A^T is a scalar multiple of A^T.

c) If $A = U \Sigma V^T$ is the SVD of A, then the SVD of A^+ is $A^+ = V \Sigma^+ U^T$.