Homework #11

due Thursday, November 5, at 11:59pm

1. For each symmetric matrix S, find an orthogonal matrix Q and a diagonal matrix D such that $S = QDQ^T$.

 a) \[
 \begin{pmatrix}
 1 & -3 \\
 -3 & 1
 \end{pmatrix}
 \]

 b) \[
 \begin{pmatrix}
 1 & -3 \\
 -3 & 9
 \end{pmatrix}
 \]

 c) \[
 \begin{pmatrix}
 14 & 2 \\
 2 & 11
 \end{pmatrix}
 \]

 d) \[
 \begin{pmatrix}
 7 & 2 & 0 \\
 2 & 6 & 2 \\
 0 & 2 & 5
 \end{pmatrix}
 \]

 e) \[
 \begin{pmatrix}
 1 & -8 & 4 \\
 -8 & 1 & 4 \\
 4 & 4 & 7
 \end{pmatrix}
 \]

 The eigenvalues in d) are 3, 6, 9 and in e) are $-9, 9$.

2. For each matrix S of Problem 1, decide if S is positive-semidefinite, and if so, compute its positive-semidefinite square root $\sqrt{S} = Q\sqrt{D}Q^T$. Verify that $(\sqrt{S})^2 = S$.

 Remark: Since \sqrt{S} is also symmetric, we have $S = \sqrt{S}^T \sqrt{S}$, so this is another way to factorize a positive-semidefinite matrix as A^TA.

3. Consider the matrix

 \[S = \begin{pmatrix}
 7 & 2 & 0 \\
 2 & 6 & 2 \\
 0 & 2 & 5
 \end{pmatrix} \]

 of Problem 1(d). Write S in the form $\lambda_1q_1q_1^T + \lambda_2q_2q_2^T + \lambda_3q_3q_3^T$ for numbers $\lambda_1, \lambda_2, \lambda_3$ and orthonormal vectors q_1, q_2, q_3.

 [Hint: Use the columns of Q. Why does this work?]

4. Find **all possible** orthogonal diagonalizations

 \[\frac{1}{5} \begin{pmatrix}
 41 & 12 \\
 12 & 34
 \end{pmatrix} = QDQ^T. \]

5. Suppose that A is a square matrix such that $A^k = 0$ for some $k > 0$.

 a) Show that 0 is the only eigenvalue of A.

 b) Show that $A = 0$ if it is symmetric.

6. Let S be a symmetric orthogonal 2×2 matrix.

 a) Show that $S = \pm I_2$ if it has only one eigenvalue.

 b) Suppose that S has two eigenvalues. Show that S is the matrix for the reflection over a line L in \mathbb{R}^2. (Recall that the reflection over a line L is given by $R_L = I_2 - 2P_L$.)

 [Hint: Write S as $\lambda_1q_1q_1^T + \lambda_2q_2q_2^T$, and use the projection formula to write I_2 and P_L in this form as well.]
7. a) Let S be a diagonalizable (over \mathbb{R}) $n \times n$ matrix with orthogonal eigenspaces: that is, eigenspaces with different eigenvalues are orthogonal subspaces. Prove that S is symmetric.

[Hint: choose orthonormal bases for each eigenspace.]

b) Let S be a matrix that can be written in the form

$$S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \cdots + \lambda_n q_n q_n^T$$

for some vectors q_1, q_2, \ldots, q_n. Prove that S is symmetric.

c) Let V be a subspace of \mathbb{R}^n, and let P_V be the projection matrix onto V. Use a) or b) to prove that P_V is symmetric. (Compare Problem 8 on Homework 6.)

8. For each symmetric matrix S, decide if S is positive-definite. If so, find its LDL^T and Cholesky decompositions. Do not compute any eigenvalues!

a) $\begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$

b) $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 5 & -1 \\ 0 & -1 & 3 \end{pmatrix}$

c) $\begin{pmatrix} 3 & -2 & 2 \\ -2 & 4 & 0 \\ 2 & 0 & 2 \end{pmatrix}$

d) $\begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 3 & 6 & 3 \\ 2 & 6 & 14 & 8 \\ 1 & 3 & 8 & 9 \end{pmatrix}$

e) $\begin{pmatrix} -1 & 2 & 3 & -2 \\ -2 & -3 & -8 & 4 \\ 3 & -8 & -4 & 6 \\ -2 & 4 & 6 & -1 \end{pmatrix}$

9. For which matrices A is $S = A^T A$ positive-definite? If S is not positive-definite, find a vector x such that $x^T S x = 0$. In any case, do not compute S!

a) $\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 0 & 3 \end{pmatrix}$

b) $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$

c) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

10. a) For each symmetric matrix S, compute the associated quadratic form $q(x) = x^T S x$.

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & -1 & 1 \\ 3 & 1 & 0 \end{pmatrix}$$

b) Let A be a square matrix and let $S = \frac{1}{2}(A + A^T)$. Show that S is symmetric and that $x^T A x = x^T S x$. (This is why we only consider symmetric matrices when studying quadratic forms.)

11. For each quadratic form $q(x_1, x_2)$, i) write $q(x)$ in the form $x^T S x$ for a symmetric matrix S, ii) find coordinates y_1, y_2 such that $q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2$, iii) draw the solutions of $q(x_1, x_2) = 1$, being sure to draw the shortest and longest solutions, and iv) find the maximum and maximum values of $q(x_1, x_2)$ subject to the constraint
\[x_1^2 + x_2^2 = 1, \text{ and at which points } (x_1, x_2) \text{ these values are attained.} \]

\[a) \ q(x_1, x_2) = 14x_1^2 + 4x_1x_2 + 11x_2^2 \quad b) \ q(x_1, x_2) = \frac{1}{10}(21x_1^2 - 6x_1x_2 + 29x_2^2) \]
\[c) \ q(x_1, x_2) = x_1^2 - 6x_1x_2 + x_2^2 \]

[Hint: An equation of the form \((x_1/r_1)^2 - (x_2/r_2)^2 = 1 \) defines a hyperbola.]

12. For the quadratic form

\[q(x_1, x_2, x_3) = 7x_1^2 + 6x_2^2 + 5x_3^2 + 4x_1x_2 + 4x_2x_3, \]
find coordinates \(y_1, y_2, y_3 \) such that \(q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 \), and find the maximum and minimum values of \(q(x_1, x_2, x_3) \) subject to the constraint \(x_1^2 + x_2^2 + x_3^2 = 1 \), along with the points \((x_1, x_2, x_3) \) at which these values are attained.

13. a) If \(S \) is positive-definite and \(C \) is invertible, show that \(CSC^T \) is positive-definite.

b) If \(S \) and \(T \) are positive-definite, show that \(S + T \) is positive-definite.

c) If \(S \) is positive-definite, show that \(S \) is invertible and that \(S^{-1} \) is positive-definite.

[Hint: For a) and b) use the positive-energy characterization of positive-definiteness; for c) use the positive-eigenvalue characterization.]

14. Let \(S \) be a positive-definite matrix.

a) Show that the diagonal entries of \(S \) are positive.

[Hint: compute \(e_i^TSe_i \).]

b) Show that the diagonal entries of \(S \) are all greater than or equal to the smallest eigenvalue of \(S \).

[Hint: if not, apply a) to \(S - aI_n \) for a diagonal entry \(a \) that is smaller than all eigenvalues.]

15. Decide if each statement is true or false, and explain why. All matrices are real.

a) A symmetric matrix is diagonalizable.

b) If \(A \) is any matrix then \(A^TA \) is positive-semidefinite.

c) A symmetric matrix with positive determinant is positive-definite.

d) A positive-definite matrix has the form \(A^TA \) for a matrix \(A \) with full column rank.

e) If \(A = CDC^{-1} \) for a diagonal matrix \(D \) and a non-orthogonal invertible matrix \(C \), then \(A \) is not symmetric.

f) The only positive-definite projection matrix is the identity.

g) All eigenvalues of a positive-definite symmetric matrix are positive real numbers.