Please **read all instructions** carefully before beginning.

- You have 180 minutes to complete this exam and upload your work. The exam itself is meant to take 75 minutes to complete, so hopefully you will have enough time.
- If you have time, go back and check your work.
- You may use **your class notes** (not the ones from the website) and the **interactive row reducer** during this exam. All other materials are strictly prohibited.
- You are not allowed to receive **outside help** during this exam. Consulting with someone else is considered cheating; suspected instances will result in immediate referral to the Office of Student Conduct.
- For full credit you must show your work so that your reasoning is clear.
- Be sure to **tag your answers** on Gradescope, and **use a scanning app**.
- Good luck!

Complete when starting the exam: I will neither give nor receive aid on this exam.

Signed: ___________________________ Time: ________________

Complete after finishing the exam: I have neither given nor received aid on this exam.

Signed: ___________________________ Time: ________________

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without distractions.
Problem 1. [25 points]

Consider

\[A = \begin{pmatrix}
 1 & 2 & 5 & 0 \\
 1 & 2 & 4 & 2 \\
 0 & -1 & 0 & 8 \\
 -1 & -3 & -1 & -1 \\
\end{pmatrix}, \quad b = \begin{pmatrix}
 12 \\
 1 \\
 -30 \\
 6 \\
\end{pmatrix}. \]

The goal of this question is to solve the equation \(Ax = b \) like a computer would.

a) Carry out Gaussian reduction with maximal partial pivoting to find a \(PA = LU \) decomposition. You should obtain

\[U = \begin{pmatrix}
 1 & 2 & 5 & 0 \\
 0 & -1 & 0 & 8 \\
 0 & 0 & 4 & -9 \\
 0 & 0 & 0 & -\frac{1}{4} \\
\end{pmatrix}. \]

Be sure to specify what \(L \) and \(P \) are.

b) Solve the equations \(Ly = Pb \) and \(Ux = y \) to find a solution of \(Ax = b \).

Problem 2. [5 points]

Consider the matrix

\[B = \begin{pmatrix}
 1 & -1 & 0 \\
 -1 & 7 & 1 \\
 2 & 4 & 1 \\
\end{pmatrix}. \]

Is \(B \) invertible? If so, find its inverse. If not, explain why.
Problem 3. [20 points]

Consider the matrix

\[D = \begin{pmatrix} 1 & 2 & 3 & 2 & 14 & 9 \\ 0 & 0 & 0 & 2 & 10 & 6 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix}. \]

Note that this matrix is in row echelon form.

a) Fill in the blanks:
 (1) The column space Col(D) is a subspace of \(\mathbb{R}^m \), where \(m = \) ___.
 (2) The null space Nul(D) is a subspace of \(\mathbb{R}^n \), where \(n = \) ___.

b) Write down a vector \(b \) such that \(Dx = b \) has no solution. If no such vector exists, explain why not.

c) Compute the reduced row echelon form of \(D \).

d) Find a set of vectors that spans Nul(D).

e) Compute the solutions of \(Dx = (2, 2, 0) \), noting that \(D(0, 0, 0, 1, 0, 0) = (2, 2, 0) \).

Problem 4. [5 points]

Decide if a matrix with the following properties has full row rank, full column rank, both, or neither.

a) \(Ax = b \) has 0 or 1 solutions, depending on \(b \).

b) \(Ax = b \) has 1 solution for every \(b \).

c) \(Ax = b \) has 0 or \(\infty \) solutions, depending on \(b \).

d) \(Ax = b \) has \(\infty \) solutions, for every \(b \).
Problem 5.\[10\text{ points}\]

Consider the subspace V and vectors b_1 and b_2:

$$V = \text{Span}\left\{ \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \\ -4 \end{pmatrix} \right\}, \quad b_1 = \begin{pmatrix} -2 \\ 8 \\ 1 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

a) Is b_1 contained in V? If so, write b_1 as a linear combination of the vectors in the span; if not, explain why.

b) Same question for b_2.

c) Circle one: V is a point line plane space

Why?

Problem 6.\[10\text{ points}\]

Give examples of 2×2 matrices A, B, C with ranks 0, 1, and 2, respectively, and draw pictures of the null space and column space. (Be precise!)

a) Rank 0: $A = \begin{pmatrix} \end{pmatrix}$

b) Rank 1: $B = \begin{pmatrix} \end{pmatrix}$

c) Rank 2: $C = \begin{pmatrix} \end{pmatrix}$