Exercises from Strang:

Problem Set 4.1 #24, 28, 29
Problem Set 4.2 #2, 5–7, 11, 12, 17\(^1\), 19, 20, 24, 26, 31
Problem Set 4.3 #28

Additional Problem:

1. You may use Sage for any or all parts of this question. Be sure to show all your work. For example, if you used Sage to compute the RREF of a matrix, show the RREF and explain what conclusions you draw from it that answer the relevant question.

https://sagecell.sagemath.org/

Consider the equation \(A\vec{x} = \vec{c} \) with

\[
A = \begin{pmatrix} 1 & -1 & 5 & -4 \\ 2 & 0 & 4 & -2 \\ 3 & 2 & 0 & 3 \end{pmatrix} \quad \text{and} \quad \vec{c} = \begin{pmatrix} 0 \\ 2 \\ 6 \end{pmatrix}.
\]

a) Show that \(\vec{c} \notin C(A) \).

b) Compute \(A^T A \) and \(A^T \vec{c} \).

c) Why does the normal equation \(A^T A\vec{x} = A^T \vec{c} \) not have a unique solution?

d) Find the general solution of the normal equation.

e) Find the projection \(\vec{p} \) of \(\vec{c} \) onto \(C(A) \) and the error vector \(\vec{e} \in N(A^T) \).

f) Find the projection matrix \(P \) onto \(C(A) \), and check that \(P\vec{c} = \vec{p} \). (Hint: see question 4.3.28 in the book.)