1. In this problem, if the statement is always true, circle T; otherwise, circle F.

a) T F If A is a square matrix and the homogeneous equation $Ax = 0$ has only the trivial solution, then A is invertible.

b) T F If A is row equivalent to B, then A and B have the same eigenvalues.

c) T F If A and B have the same eigenvectors, then A and B have the same characteristic polynomial.

d) T F If A is diagonalizable, then A has n distinct eigenvalues.

e) T F If A is a matrix and $Ax = b$ has a unique solution for every b in the codomain of the transformation $T(x) = Ax$, then A is an invertible square matrix.

f) T F If A is an $n \times n$ matrix then $\det(-A) = -\det(A)$.

g) T F If A is an $n \times n$ matrix and its eigenvectors form a basis for \mathbb{R}^n, then A is invertible.

h) T F If 0 is an eigenvalue of the $n \times n$ matrix A, then rank$(A) < n$.

2. In this problem, if the statement is always true, circle T; if it is always false, circle F; if it is sometimes true and sometimes false, circle M.

a) T F M If A is a 3×3 matrix with characteristic polynomial $-\lambda^3 + \lambda^2 + \lambda$, then A is invertible.

b) T F M A 3×3 matrix with (only) two distinct eigenvalues is diagonalizable.

c) T F M A diagonalizable $n \times n$ matrix admits n linearly independent eigenvectors.

d) T F M If $\det(A) = 0$, then 0 is an eigenvalue of A.

3. In this problem, you need not explain your answers; just circle the correct one(s).
Let A be an $n \times n$ matrix.

a) Which one of the following statements is correct?

1. An eigenvector of A is a vector v such that $Av = \lambda v$ for a nonzero scalar λ.

2. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a scalar λ.

3. An eigenvector of A is a nonzero scalar λ such that $Av = \lambda v$ for some vector v.

4. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a nonzero scalar λ.

b) Which one of the following statements is not correct?

1. An eigenvalue of A is a scalar λ such that $A - \lambda I$ is not invertible.

2. An eigenvalue of A is a scalar λ such that $(A - \lambda I)v = 0$ has a solution.

3. An eigenvalue of A is a scalar λ such that $Av = \lambda v$ for a nonzero vector v.

4. An eigenvalue of A is a scalar λ such that $\det(A - \lambda I) = 0$.

c) Which of the following 3×3 matrices are necessarily diagonalizable over the real numbers? (Circle all that apply.)

1. A matrix with three distinct real eigenvalues.

2. A matrix with one real eigenvalue.

3. A matrix with a real eigenvalue λ of algebraic multiplicity 2, such that the λ-eigenspace has dimension 2.

4. A matrix with a real eigenvalue λ such that the λ-eigenspace has dimension 2.
4. Short answer.
 a) Let $A = \begin{pmatrix} -1 & 1 \\ 1 & 7 \end{pmatrix}$, and define a transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $T(x) = Ax$. Find the area of $T(S)$, if S is a triangle in \mathbb{R}^2 with area 2.
 b) Suppose that $A = C \begin{pmatrix} 1/2 & 0 \\ 0 & -1 \end{pmatrix} C^{-1}$, where C has columns v_1 and v_2. Given x and y in the picture below, draw the vectors Ax and Ay.

![Diagram of vectors](image)

 c) Write a diagonalizable 3×3 matrix A whose only eigenvalue is $\lambda = 2$.

5. Suppose we know that
 \[
 \begin{pmatrix} 4 & -10 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}^{-1}.
 \]
 Find $\begin{pmatrix} 4 & -10 \\ 2 & -5 \end{pmatrix}^{98}$.

6. Let
 \[
 A = \begin{pmatrix} 7 & 1 & 4 & 1 \\ -1 & 0 & 0 & 6 \\ 9 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 1 & 5 & 4 \\ 1 & -1 & -3 & 0 \\ -1 & 0 & 5 & 4 \\ 3 & -3 & -2 & 5 \end{pmatrix}
 \]
 a) Compute $\det(A)$.
 b) Compute $\det(B)$.
 c) Compute $\det(AB)$.
 d) Compute $\det(A^2B^{-1}AB^2)$.
7. Give an example of a 2×2 real matrix A with each of the following properties. You need not explain your answer.

a) A has no real eigenvalues.

b) A has eigenvalues 1 and 2.

c) A is diagonalizable but not invertible.

d) A is a rotation matrix with real eigenvalues.

8. Consider the matrix
$$
A = \begin{pmatrix} 4 & 2 & -4 \\ 0 & 2 & 0 \\ 2 & 2 & -2 \end{pmatrix}.
$$

a) Find the eigenvalues of A, and compute their algebraic multiplicities.

b) For each eigenvalue of A, find a basis for the corresponding eigenspace.

c) Is A diagonalizable? If so, find an invertible matrix C and a diagonal matrix D such that $A = CDC^{-1}$. If not, why not?

9. Find all values of a so that $\lambda = 1$ an eigenvalue of the matrix A below.
$$
A = \begin{pmatrix} 3 & -1 & 0 & a \\ a & 2 & 0 & 4 \\ 2 & 0 & 1 & -2 \\ 13 & a & -2 & -7 \end{pmatrix}
$$

10. Consider the matrix
$$
A = \begin{pmatrix} 3\sqrt{3} -1 & -5\sqrt{3} \\ 2\sqrt{3} & -3\sqrt{3} -1 \end{pmatrix}
$$

a) Find both complex eigenvalues of A.

b) Find an eigenvector corresponding to each eigenvalue.