- \blacktriangleright The third midterm is on this **Friday, November 16**.
	- The exam covers \S §4.5, 5.1, 5.2. 5.3, 6.1, 6.2, 6.4, 6.5.
	- \triangleright About half the problems will be conceptual, and the other half computational.
- \blacktriangleright WeBWorK 6.4, 6.5 are due today at 11:59pm.
- \triangleright There is a practice midterm posted on the website. It is meant to be similar in format and difficulty to the real midterm.
- \blacktriangleright Study tips:
	- In Drill problems in Lay. Practice the recipes until you can do them in your sleep.
	- \blacktriangleright Make sure to learn the theorems and learn the definitions, and understand what they mean. Make flashcards!
	- \blacktriangleright There's a list of items to review at the beginning of every section of the book.
	- \triangleright Sit down to do the practice midterm in 50 minutes, with no notes.
	- \triangleright Come to office hours!
- ▶ TA review session: Skiles 202, Thursday, 7-8pm.
- \blacktriangleright My office is Skiles 244 and Rabinoffice hours are: Mondays, 12–1pm; Wednesdays, 1–3pm. Extra office hours: Thursday, 9–11am.

Chapter 7

Orthogonality

Section 7.1

Dot Products and Orthogonality

Orientation

Recall: This course is about learning to:

- \triangleright Solve the matrix equation $Ax = b$
- Solve the matrix equation $Ax = \lambda x$
- Almost solve the equation $Ax = b$

We are now aiming at the last topic.

Idea: In the real world, data is imperfect. Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v .

Due to measurement error, though, the measured x is not actually in Span $\{u, v\}$. In other words, the equation $au + bv = x$ has no solution. What do you do? The real value is probably the *closest* point to x on Span $\{u, v\}$. Which point is that?

The Dot Product

We need a notion of *angle* between two vectors, and in particular, a notion of orthogonality (i.e. when two vectors are perpendicular). This is the purpose of the dot product.

Definition

The **dot product** of two vectors x, y in \mathbb{R}^n is

$$
x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \stackrel{\text{def}}{=} x_1y_1 + x_2y_2 + \cdots + x_ny_n.
$$

Thinking of x, y as column vectors, this is the same as $x^T y$.

Example

$$
\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = (1 \ 2 \ 3) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32.
$$

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that the result is a scalar.

$$
\begin{aligned} \triangleright x \cdot y &= y \cdot x \\ \triangleright (x + y) \cdot z &= x \cdot z + y \cdot z \end{aligned}
$$

 \blacktriangleright $(cx) \cdot y = c(x \cdot y)$

Dotting a vector with itself is special:

$$
\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1^2 + x_2^2 + \dots + x_n^2.
$$

Hence:

 \blacktriangleright $x \cdot x > 0$

 $\times x \cdot x = 0$ if and only if $x = 0$.

Important: $x \cdot y = 0$ does *not* imply $x = 0$ or $y = 0$. For example, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$.

The Dot Product and Length

Definition

The length or norm of a vector x in \mathbb{R}^n is

$$
||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.
$$

Why is this a good definition? The Pythagorean theorem!

Fact

If x is a vector and c is a scalar, then $||cx|| = |c| \cdot ||x||$.

$$
\left\| \binom{6}{8} \right\| = \left\| 2 \binom{3}{4} \right\| = 2 \left\| \binom{3}{4} \right\| = 10
$$

The Dot Product and Distance

Definition

The **distance** between two points x, y in \mathbb{R}^n is

$$
dist(x, y) = ||y - x||.
$$

This is just the length of the vector from x to y .

Example

Let $x = (1, 2)$ and $y = (4, 4)$. Then

$$
dist(x, y) = ||y - x|| = \left\| \binom{3}{2} \right\| = \sqrt{3^2 + 2^2} = \sqrt{13}.
$$

Unit Vectors

Definition

A unit vector is a vector v with length $\|v\| = 1$.

Example

The unit coordinate vectors are unit vectors:

$$
\|e_1\| = \left\| \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\| = \sqrt{1^2 + 0^2 + 0^2} = 1
$$

Definition

Let x be a nonzero vector in \mathbf{R}^n . The unit vector in the direction of x is the vector $\frac{x}{\| \cdot \|}$ $\frac{\lambda}{\|x\|}$.

This is in fact a unit vector:

scalar
$$
\left\| \frac{x}{\|x\|} \right\| = \frac{1}{\|x\|} \|x\| = 1.
$$

Unit Vectors Example

Example

What is the unit vector in the direction of $x = \begin{pmatrix} 3 & 1 \ 3 & 3 \end{pmatrix}$ 4 $\big)$?

$$
u=\frac{x}{\|x\|}=\frac{1}{\sqrt{3^2+4^2}}\begin{pmatrix}3\\4\end{pmatrix}=\frac{1}{5}\begin{pmatrix}3\\4\end{pmatrix}.
$$

Orthogonality

Definition Two vectors x, y are **orthogonal** or **perpendicular** if $x \cdot y = 0$. *Notation:* $x \perp y$ means $x \cdot y = 0$.

Why is this a good definition? The Pythagorean theorem / law of cosines!

Orthogonality Example

Problem: Find *all* vectors orthogonal to $v =$ $\sqrt{ }$ $\overline{1}$ 1 1 −1 \setminus $\vert \cdot$

We have to find all vectors x such that $x \cdot v = 0$. This means solving the equation

$$
0 = x \cdot v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3.
$$

The parametric form for the solution is $x_1 = -x_2 + x_3$, so the parametric vector form of the general solution is

$$
x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.
$$

For instance,
$$
\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \perp \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \text{ because } \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 0.
$$

Orthogonality Example

Problem: Find *all* vectors orthogonal to both $v =$ $\sqrt{ }$ $\overline{1}$ 1 1 −1 ¹ and $w =$ $\sqrt{ }$ \mathcal{L} 1 1 1 ¹ $\vert \cdot$

Now we have to solve the system of two homogeneous equations

$$
0 = x \cdot v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3
$$

\n
$$
0 = x \cdot w = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = x_1 + x_2 + x_3.
$$

In matrix form:

 $(1 \ 1 \ -1)$ 1 1 1 The rows are v and $w\longrightarrow\hspace{-1.5mm}\left(\begin{array}{ccc} 1 & 1 & -1\ 1 & 1 & 1 \end{array}\right)\hspace{0.1cm}\stackrel{\text{rref}}{\hspace{-0.2cm}\text{weak}}\hspace{0.1cm}\left(\begin{array}{ccc} 1 & 1 & 0\ 0 & 0 & 1 \end{array}\right).$

The parametric vector form of the solution is

$$
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.
$$

Problem: Find all vectors orthogonal to some number of vectors v_1, v_2, \ldots, v_m in \mathbf{R}^n .

This is the same as finding all vectors x such that

$$
0 = v_1^T x = v_2^T x = \cdots = v_m^T x.
$$

Putting the row vectors $v_1^{\mathcal{T}}, v_2^{\mathcal{T}}, \ldots, v_m^{\mathcal{T}}$ into a matrix, this is the same as finding all x such that

$$
\begin{pmatrix}\n-v_1^T - \\
-v_2^T - \\
\vdots \\
-v_m^T -\n\end{pmatrix} x = \begin{pmatrix}\nv_1 \cdot x \\
v_2 \cdot x \\
\vdots \\
v_m \cdot x\n\end{pmatrix} = 0.
$$

 $\sqrt{ }$

 $-\nu$ T n_1' — $-\nu$ T . 2^{\prime} — . . $-\nu$ T $\frac{1}{m}$ —

 \setminus

 $\vert \cdot$

 $\overline{}$

Important

The set of all vectors orthogonal to some vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n is the *null space* of the $m \times n$ matrix you get by "turning them sideways and smooshing them together:"

In particular, this set is a subspace!

Summary

- The **dot product** of vectors x, y in \mathbb{R}^n is the number $x^T y$.
- The length or norm of a vector x in \mathbf{R}^n is $||x|| = \sqrt{x \cdot x}$.
- **IF The distance** between two vectors x, y in \mathbb{R}^n is dist $(x, y) = ||y x||$.
- A unit vector is a vector v with length $||v|| = 1$.
- In The unit vector in the direction of x is $x/||x||$.
- \blacktriangleright Two vectors x, y are **orthogonal** if $x \cdot y = 0$.
- The set of all vectors orthogonal to some vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n is the null space of the matrix

$$
\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}.
$$