The third midterm is on this **Friday, November 16**.

- The exam covers §§4.5, 5.1, 5.2, 5.3, 6.1, 6.2, 6.4, 6.5.
- About half the problems will be conceptual, and the other half computational.

WeBWorK 6.4, 6.5 are due Wednesday at 11:59pm.

There is a practice midterm posted on the website. It is meant to be similar in format and difficulty to the real midterm.

Study tips:

- Drill problems in Lay. Practice the recipes until you can do them in your sleep.
- Make sure to learn the theorems and learn the definitions, and understand what they mean. Make flashcards!
- There's a list of items to review at the beginning of every section of the book.
- Sit down to do the practice midterm in 50 minutes, with no notes.
- Come to office hours!

TA review sessions: check your email.

My office is Skiles 244 and Rabinoffice hours are: Mondays, 12–1pm; Wednesdays, 1–3pm. (Maybe more this week.)
Section 6.6

Stochastic Matrices and PageRank
Stochastic Matrices

Definition
A square matrix A is **stochastic** if all of its entries are nonnegative, and the sum of the entries of each column is 1.

We say A is **positive** if all of its entries are positive.

These arise very commonly in modeling of probabilistic phenomena (Markov chains).

You’ll be responsible for knowing basic facts about stochastic matrices, the Perron–Frobenius theorem, and PageRank, but we will not cover them in depth.
Red Box has kiosks all over where you can rent movies. You can return them to any other kiosk. Let A be the matrix whose ij entry is the probability that a customer renting a movie from location j returns it to location i. For example, if there are three locations, maybe

$$A = \begin{pmatrix} .3 & .4 & .5 \\ .3 & .4 & .3 \\ .4 & .2 & .2 \end{pmatrix}.$$

30% probability a movie rented from location 3 gets returned to location 2

The columns sum to 1 because there is a 100% chance that the movie will get returned to some location. This is a positive stochastic matrix.

Note that, if $v = (x, y, z)$ represents the number of movies at the three locations, then (assuming the number of movies is large), Red Box will have approximately

$$Av = A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} .3x + .4y + .5z \\ .3x + .4y + .3z \\ .4x + .2y + .2z \end{pmatrix}.$$

“The number of movies returned to location 2 will be (on average):

- 30% of the movies from location 1;
- 40% of the movies from location 2;
- 30% of the movies from location 3”

movies in its three locations the next day. The total number of movies doesn’t change because the columns sum to 1.
If \(x_n, y_n, z_n \) are the numbers of movies in locations 1, 2, 3, respectively, on day \(n \), and \(\mathbf{v}_n = (x_n, y_n, z_n) \), then:

\[
\mathbf{v}_n = A \mathbf{v}_{n-1} = A^2 \mathbf{v}_{n-2} = \cdots = A^n \mathbf{v}_0.
\]

Recall: This is an example of a **difference equation**.

Red Box probably cares about what \(\mathbf{v}_n \) is as \(n \) gets large: it tells them where the movies will end up *eventually*. This seems to involve computing \(A^n \) for large \(n \), but as we will see, they actually only have to compute one eigenvector.

In general: A difference equation \(\mathbf{v}_{n+1} = A \mathbf{v}_n \) is used to model a state change controlled by a matrix:

- \(\mathbf{v}_n \) is the “state at time \(n \)”,
- \(\mathbf{v}_{n+1} \) is the “state at time \(n + 1 \)”, and
- \(\mathbf{v}_{n+1} = A \mathbf{v}_n \) means that \(A \) is the “change of state matrix.”
Fact: 1 is an eigenvalue of a stochastic matrix.

Why? If A is stochastic, then 1 is an eigenvalue of A^T:

$$
\begin{pmatrix}
.3 & .3 & .4 \\
.4 & .4 & .2 \\
.5 & .3 & .2 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
1 \\
\end{pmatrix}
= 1 \cdot
\begin{pmatrix}
1 \\
1 \\
1 \\
\end{pmatrix}.
$$

Lemma

A and A^T have the same eigenvalues.

Proof: $\det(A - \lambda I) = \det((A - \lambda I)^T) = \det(A^T - \lambda I)$, so they have the same characteristic polynomial.

Note: This doesn’t give a new procedure for finding an eigenvector with eigenvalue 1; it only shows one exists.
Eigenvalues of Stochastic Matrices
Continued

Fact: if \(\lambda \) is an eigenvalue of a stochastic matrix, then \(|\lambda| \leq 1 \). Hence 1 is the *largest* eigenvalue (in absolute value).

Why? If \(\lambda \) is an eigenvalue of \(A \) then it is an eigenvalue of \(A \trans \).

\[
eigenvector \ v = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \lambda v = A \trans v \implies \lambda x_j = \sum_{i=1}^{n} a_{ij} x_i.
\]

Choose \(x_j \) with the largest absolute value, so \(|x_i| \leq |x_j| \) for all \(i \).

\[
|\lambda| \cdot |x_j| = \left| \sum_{i=1}^{n} a_{ij} x_i \right| \leq \sum_{i=1}^{n} a_{ij} \cdot |x_i| \leq \sum_{i=1}^{n} a_{ij} \cdot |x_j| = 1 \cdot |x_j|,
\]

so \(|\lambda| \leq 1 \).

Better fact: if \(\lambda \neq 1 \) is an eigenvalue of a *positive* stochastic matrix, then \(|\lambda| < 1 \).
Let $A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$. This is a positive stochastic matrix.

This matrix is diagonalizable:

$$A = CDC^{-1} \quad \text{for} \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}.$$

Let $w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $w_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ be the columns of C.

$$A(a_1 w_1 + a_2 w_2) = a_1 w_1 + \frac{1}{2} a_2 w_2$$

$$A^2(a_1 w_1 + a_2 w_2) = a_1 w_1 + \frac{1}{4} a_2 w_2$$

$$A^3(a_1 w_1 + a_2 w_2) = a_1 w_1 + \frac{1}{8} a_2 w_2$$

$$\vdots$$

$$A^n(a_1 w_1 + a_2 w_2) = a_1 w_1 + \frac{1}{2^n} a_2 w_2$$

When n is large, the second term disappears, so $A^n x$ approaches $a_1 w_1$, which is an eigenvector with eigenvalue 1 (assuming $a_1 \neq 0$). So all vectors get “sucked into the 1-eigenspace,” which is spanned by $w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
Diagonalizable Stochastic Matrices

Example, continued

All vectors get “sucked into the 1-eigenspace.”
Diagonalizable Stochastic Matrices

The Red Box matrix $A = \begin{pmatrix} .3 & .4 & .5 \\ .3 & .4 & .3 \\ .4 & .2 & .2 \end{pmatrix}$ has characteristic polynomial

$$f(\lambda) = -\lambda^3 + 0.12\lambda - 0.02 = -(\lambda - 1)(\lambda + 0.2)(\lambda - 0.1).$$

So 1 is indeed the largest eigenvalue. Since A has 3 distinct eigenvalues, it is diagonalizable:

$$A = C \begin{pmatrix} 1 & 0 & 0 \\ 0 & .1 & 0 \\ 0 & 0 & -.2 \end{pmatrix} C^{-1} = CDC^{-1}.$$

Hence it is easy to compute the powers of A:

$$A^n = C \begin{pmatrix} 1 & 0 & 0 \\ 0 & (.1)^n & 0 \\ 0 & 0 & (-.2)^n \end{pmatrix} C^{-1} = CD^n C^{-1}.$$

Let w_1, w_2, w_3 be the columns of C, i.e. the eigenvectors of C with respective eigenvalues 1, .1, −.2.
Let $a_1 w_1 + a_2 w_2 + a_3 w_3$ be any vector in \mathbb{R}^3.

\[
A(a_1 w_1 + a_2 w_2 + a_3 w_3) = a_1 w_1 + (.1)a_2 w_2 + (-.2)a_3 w_3
\]
\[
A^2(a_1 w_1 + a_2 w_2 + a_3 w_3) = a_1 w_1 + (.1)^2a_2 w_2 + (-.2)^2a_3 w_3
\]
\[
A^3(a_1 w_1 + a_2 w_2 + a_3 w_3) = a_1 w_1 + (.1)^3a_2 w_2 + (-.2)^3a_3 w_3
\]
\[\vdots\]
\[
A^n(a_1 w_1 + a_2 w_2 + a_3 w_3) = a_1 w_1 + (.1)^n a_2 w_2 + (-.2)^n a_3 w_3
\]

As n becomes large, this approaches $a_1 w_1$, which is an eigenvector with eigenvalue 1 (assuming $a_1 \neq 0$). So all vectors get “sucked into the 1-eigenspace,” which (I computed) is spanned by

\[
w = w_1 = \frac{1}{18} \begin{pmatrix} 7 \\ 6 \\ 5 \end{pmatrix}.
\]

(We’ll see in a moment why I chose that eigenvector.)
Start with a vector \(v_0 \) (the number of movies on the first day), let \(v_1 = Av_0 \) (the number of movies on the second day), let \(v_2 = Av_1 \), etc.

We see that \(v_n \) approaches an eigenvector with eigenvalue 1 as \(n \) gets large: all vectors get “sucked into the 1-eigenspace.” [interactive]
If A is the Red Box matrix, and v_n is the vector representing the number of movies in the three locations on day n, then

$$v_{n+1} = Av_n.$$

For any starting distribution v_0 of videos in red boxes, after enough days, the distribution $v (= v_n$ for n large) is an eigenvector with eigenvalue 1:

$$Av = v.$$

In other words, eventually each kiosk has the same number of movies, every day.

Moreover, we know exactly what v is: it is the multiple of $w \sim (0.39, 0.33, 0.28)$ that represents the same number of videos as in v_0. (Remember the total number of videos never changes.)

Presumably, Red Box really does have to do this kind of analysis to determine how many videos to put in each box.
Definition
A steady state for a stochastic matrix \(A\) is an eigenvector \(w\) with eigenvalue 1, such that all entries are positive and sum to 1.

Perron–Frobenius Theorem
If \(A\) is a positive stochastic matrix, then it admits a unique steady state vector \(w\), which spans the 1-eigenspace.

Moreover, for any vector \(v_0\) with entries summing to some number \(c\), the iterates \(v_1 = Av_0, v_2 = Av_1, \ldots, v_n = Av_{n-1}, \ldots\), approach \(cw\) as \(n\) gets large.

Translation: The Perron–Frobenius Theorem says the following:

- The 1-eigenspace of a positive stochastic matrix \(A\) is a line.
- To compute the steady state, find any 1-eigenvector (as usual), then divide by the sum of the entries; the resulting vector \(w\) has entries that sum to 1, and are automatically positive.
- Think of \(w\) as a vector of steady state percentages: if the movies are distributed according to these percentages today, then they’ll be in the same distribution tomorrow.
- The sum \(c\) of the entries of \(v_0\) is the total number of movies; eventually, the movies arrange themselves according to the steady state percentage, i.e., \(v_n \to cw\).
Consider the Red Box matrix

\[
A = \begin{pmatrix}
0.3 & 0.4 & 0.5 \\
0.3 & 0.4 & 0.3 \\
0.4 & 0.2 & 0.2
\end{pmatrix}
\]

I computed \(\text{Nul}(A - I)\) and found that

\[
w' = \begin{pmatrix}
7 \\
6 \\
5
\end{pmatrix}
\]

is an eigenvector with eigenvalue 1.

To get a steady state, I divided by 18 = 7 + 6 + 5 to get

\[
w = \frac{1}{18} \begin{pmatrix}
7 \\
6 \\
5
\end{pmatrix} \sim (0.39, 0.33, 0.28).
\]

This says that eventually, 39% of the movies will be in location 1, 33% will be in location 2, and 28% will be in location 3, every day.

So if you start with 100 total movies, eventually you’ll have 100 \(w = (39, 33, 28)\) movies in the three locations, every day.

The Perron–Frobenius Theorem says that our analysis of the Red Box matrix works for \textit{any} positive stochastic matrix—whether or not it is diagonalizable!
Internet searching in the 90’s was a pain. Yahoo or AltaVista would scan pages for your search text, and just list the results with the most occurrences of those words.

Not surprisingly, the more unsavory websites soon learned that by putting the words “Alanis Morissette” a million times in their pages, they could show up first every time an angsty teenager tried to find *Jagged Little Pill* on Napster.

Larry Page and Sergey Brin invented a way to rank pages by *importance*. They founded Google based on their algorithm.

Here’s how it works. (roughly)

Reference:

Each webpage has an associated importance, or rank. This is a positive number.

If page P links to n other pages Q_1, Q_2, \ldots, Q_n, then each Q_i should inherit $\frac{1}{n}$ of P’s importance.

- So if a very important page links to your webpage, your webpage is considered important.
- And if a ton of unimportant pages link to your webpage, then it’s still important.
- But if only one crappy site links to yours, your page isn’t important.

Random surfer interpretation: a “random surfer” just sits at his computer all day, randomly clicking on links. The pages he spends the most time on should be the most important. This turns out to be equivalent to the rank.
The Importance Matrix

Consider the following Internet with only four pages. Links are indicated by arrows.

Page \(A\) has 3 links, so it passes \(\frac{1}{3}\) of its importance to pages \(B, C, D\).
Page \(B\) has 2 links, so it passes \(\frac{1}{2}\) of its importance to pages \(C, D\).
Page \(C\) has one link, so it passes all of its importance to page \(A\).
Page \(D\) has 2 links, so it passes \(\frac{1}{2}\) of its importance to pages \(A, C\).

In terms of matrices, if \(v = (a, b, c, d)\) is the vector containing the ranks \(a, b, c, d\) of the pages \(A, B, C, D\), then

\[
\begin{pmatrix}
0 & 0 & 1 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 0 & 0
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix}
=
\begin{pmatrix}
c + \frac{1}{2}d \\
\frac{1}{3}a \\
\frac{1}{3}a + \frac{1}{2}b + \frac{1}{2}d \\
\frac{1}{3}a + \frac{1}{2}b
\end{pmatrix}
=
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix}
\]
Observations:

- The importance matrix is a stochastic matrix! The columns each contain $1/n$ ($n =$ number of links), n times.
- The rank vector is an eigenvector with eigenvalue 1!

Random surfer interpretation: If a random surfer has probability (a, b, c, d) to be on page A, B, C, D, respectively, then after clicking on a random link, the probability he’ll be on each page is

$$\begin{pmatrix}
0 & 0 & 1 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 0 & 0
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix}
= \begin{pmatrix}
c + \frac{1}{2}d \\
\frac{1}{3}a \\
\frac{1}{3}a + \frac{1}{2}b + \frac{1}{2}d \\
\frac{1}{3}a + \frac{1}{2}b
\end{pmatrix}.$$

The rank vector is a steady state for the importance matrix: it’s the probability vector (a, b, c, d) such that, after clicking on a random link, the random surfer will have the same probability of being on each page.

So, the important (high-ranked) pages are those where a random surfer will end up most often.
Problems with the Importance Matrix

Dangling pages

Observation: the importance matrix is *not* positive: it’s only nonnegative. So we can’t apply the Perron–Frobenius theorem. Does this cause problems? Yes!

Consider the following Internet:

![Diagram of Internet]

The importance matrix is \[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix}
\]. This has characteristic polynomial

\[
f(\lambda) = \det \begin{pmatrix}
-\lambda & 0 & 0 \\
0 & -\lambda & 0 \\
1 & 1 & -\lambda
\end{pmatrix} = -\lambda^3.
\]

So 1 is not an eigenvalue at all: there is no rank vector! (It is not stochastic.)
Problems with the Importance Matrix

Disconnected internet

Consider the following Internet:

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0
\end{pmatrix}
\]

This has linearly independent eigenvectors

\[
\begin{pmatrix}
1 \\
1 \\
0 \\
0 \\
0
\end{pmatrix}
\] and

\[
\begin{pmatrix}
0 \\
0 \\
1 \\
1 \\
1
\end{pmatrix}
\]

both with eigenvalue 1. So there is more than one rank vector!
The Google Matrix

Here is Page and Brin’s solution. First we fix the importance matrix A as follows: replace a column if zeros with a column of $1/N$s, where N is the number of pages.

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad \xrightarrow{\text{replace zeros}} \quad A' = \begin{pmatrix} 0 & 0 & 1/3 \\ 0 & 0 & 1/3 \\ 1 & 1 & 1/3 \end{pmatrix}.$$

The **modified importance matrix** A' is always stochastic.

Now fix p in $(0, 1)$, called the **damping factor**. (A typical value is $p = 0.15$.) The Google Matrix is

$$M = (1 - p) \cdot A' + p \cdot B$$

where

$$B = \frac{1}{N} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix},$$

N is the total number of pages.

In the random surfer interpretation, this matrix M says: with probability p, our surfer will surf to a completely random page; otherwise, he’ll click a random link. On a page with no links, he’ll always surf to a completely random page.
Lemma
The Google matrix is a positive stochastic matrix.

The PageRank vector is the steady state for the Google Matrix.

This exists and has positive entries by the Perron–Frobenius theorem. The hard part is calculating it: the Google matrix has 1 gazillion rows.
Consider this Internet:

The importance and modified importance matrices are

\[
A = \begin{pmatrix}
0 & 0 & 0 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 0 & 0
\end{pmatrix}
\]

\[
A' = \begin{pmatrix}
0 & 0 & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{3} & 0 & \frac{1}{4} & 0 \\
\frac{1}{3} & \frac{1}{2} & \frac{1}{4} & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & 0
\end{pmatrix}
\]

If we choose the damping factor \(p = .15 \), then the Google matrix is

\[
M = (1 - p)A' + pB = \begin{pmatrix}
0.0375 & 0.0375 & 0.2500 & 0.4625 \\
0.3208 & 0.0375 & 0.2500 & 0.0375 \\
0.3208 & 0.4625 & 0.2500 & 0.4625 \\
0.3208 & 0.4625 & 0.2500 & 0.0375
\end{pmatrix}
\]
The Google Matrix

Example, Continued

\[
M = \begin{pmatrix}
0.0375 & 0.0375 & 0.2500 & 0.4625 \\
0.3208 & 0.0375 & 0.2500 & 0.0375 \\
0.3208 & 0.4625 & 0.2500 & 0.4625 \\
0.3208 & 0.4625 & 0.2500 & 0.0375 \\
\end{pmatrix}
\]

Row reduce \(M - I \) to find the steady-state vector:

\[
\begin{pmatrix}
0.2192 \\
0.1752 \\
0.3558 \\
0.2498
\end{pmatrix}
\]

This is the PageRank!
Stochastic and positive stochastic matrices model probabilistic systems.

We care about the long-term behavior of such a system. This is called the steady state. It tells us the eventual state of the system.

The Perron–Frobenius theorem says that a positive stochastic matrix always has a unique steady state.

If you can understand the RedBox example, then you understand almost everything.

The Google matrix is an example of a positive stochastic matrix.

The steady state of the Google matrix is the PageRank.