Announcements
Monday, November 5

▶ The third midterm is on **Friday, November 16**.
 ▶ That is one week from this Friday.
 ▶ The exam covers §§4.5, 5.1, 5.2, 5.3, 6.1, 6.2, 6.4, 6.5.

▶ WeBWorK 6.1, 6.2 are due Wednesday at 11:59pm.

▶ The quiz on Friday covers §§6.1, 6.2.

▶ My office is Skiles 244 and Rabinoffice hours are: Mondays, 12–1pm; Wednesdays, 1–3pm.
Section 6.4

Diagonalization
Many real-word linear algebra problems have the form:

\[v_1 = A v_0, \quad v_2 = Av_1 = A^2 v_0, \quad v_3 = Av_2 = A^3 v_0, \quad \ldots \quad v_n = Av_{n-1} = A^n v_0. \]

This is called a **difference equation**.

Our toy example about rabbit populations had this form.

The question is, what happens to \(v_n \) as \(n \to \infty \)?

- Taking powers of diagonal matrices is easy!
- Taking powers of *diagonalizable* matrices is still easy!
- Diagonalizing a matrix is an eigenvalue problem.
If D is diagonal, then D^n is also diagonal; its diagonal entries are the nth powers of the diagonal entries of D:

\[
D = \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \\
D^2 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \\
D^3 = \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \\
\ldots \\
D^n = \begin{pmatrix}
(-1)^n & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]
Powers of Matrices that are Similar to Diagonal Ones

What if A is not diagonal?

Example
Let $A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix}$. Compute A^n, using

$$A = CDC^{-1}$$

for $C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$.

We compute:

$$A^2 =$$

$$A^3 =$$

$$\vdots$$

$$A^n =$$

Therefore

$$A^n =$$
Similar Matrices

Definition
Two \(n \times n \) matrices are similar if there exists an invertible \(n \times n \) matrix \(C \) such that \(A = CBC^{-1} \).

Fact: if two matrices are similar then so are their powers:

\[
A = CBC^{-1} \implies A^n = CB^n C^{-1}.
\]

Fact: if \(A \) is similar to \(B \) and \(B \) is similar to \(D \), then \(A \) is similar to \(D \).
Definition

An \(n \times n \) matrix \(A \) is **diagonalizable** if it is similar to a diagonal matrix:

\[
A = CDC^{-1} \quad \text{for } D \text{ diagonal.}
\]

Important

If \(A = CDC^{-1} \) for \(D = \begin{pmatrix}
 d_{11} & 0 & \cdots & 0 \\
 0 & d_{22} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & d_{nn}
\end{pmatrix} \) then

\[
A^k = CD^kC^{-1} = C \begin{pmatrix}
 d_{11}^k & 0 & \cdots & 0 \\
 0 & d_{22}^k & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & d_{nn}^k
\end{pmatrix} C^{-1}.
\]

So diagonalizable matrices are easy to raise to any power.
The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = CDC^{-1}$ for

$$C = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix} \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues (in the same order).

Corollary

A theorem that follows easily from another theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

The Corollary is true because eigenvectors with distinct eigenvalues are always linearly independent. We will see later that a diagonalizable matrix need not have n distinct eigenvalues though.
The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = CDC^{-1}$ for

$$C = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix} \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues (in the same order).

Note that the decomposition is not unique: you can reorder the eigenvalues and eigenvectors.

$$A = \begin{pmatrix} v_1 & v_2 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} v_1 & v_2 \end{pmatrix}^{-1} = \begin{pmatrix} v_2 & v_1 \end{pmatrix} \begin{pmatrix} \lambda_2 & 0 \\ 0 & \lambda_1 \end{pmatrix} \begin{pmatrix} v_2 & v_1 \end{pmatrix}^{-1}$$
Diagonalization

Easy example

Question: What does the Diagonalization Theorem say about the matrix

\[A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \]?

This is a triangular matrix, so the eigenvalues are the diagonal entries 1, 2, 3.

A diagonal matrix just scales the coordinates by the diagonal entries, so we can take our eigenvectors to be the unit coordinate vectors \(e_1, e_2, e_3 \). Hence the Diagonalization Theorem says

\[A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \]

It doesn't give us anything new because the matrix was already diagonal!

A diagonal matrix \(D \) is diagonalizable! It is similar to itself:

\[D = I_n D I_n^{-1}. \]
Diagonalization
Example

Problem: Diagonalize \(A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix} \).
Diagonalization

Another example

Problem: Diagonalize $A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

The characteristic polynomial is $f(\lambda) = \det(A - \lambda I) = -\lambda^3 + 4\lambda^2 - 5\lambda + 2 = -\lambda(\lambda - 1)^2(\lambda - 2)$. Therefore the eigenvalues are 1 and 2, with respective multiplicities 2 and 1.

Let's compute the 1-eigenspace: $(A - I)x = 0 \iff \begin{pmatrix} 3 & -3 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{pmatrix}x = 0$.

$rref \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}x = 0$

The parametric vector form is $x = y, y = z \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Hence a basis for the 1-eigenspace is $B_1 = \{ v_1, v_2 \}$ where $v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.
Problem: Diagonalize $A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

Note: In this case, there are three linearly independent eigenvectors, but only two distinct eigenvalues.
Problem: Show that $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.

Conclusion: A has only one linearly independent eigenvector, so by the “only if” part of the diagonalization theorem, A is not diagonalizable.
Which of the following matrices are diagonalizable, and why?

A. \[
\begin{pmatrix}
1 & 2 \\
0 & 1
\end{pmatrix}
\]

B. \[
\begin{pmatrix}
1 & 2 \\
0 & 2
\end{pmatrix}
\]

C. \[
\begin{pmatrix}
2 & 1 \\
0 & 2
\end{pmatrix}
\]

D. \[
\begin{pmatrix}
2 & 0 \\
0 & 2
\end{pmatrix}
\]

Matrix A is not diagonalizable: its only eigenvalue is 1, and its 1-eigenspace is spanned by \[
\begin{pmatrix}
1 \\
0
\end{pmatrix}
\].

Similarly, matrix C is not diagonalizable.

Matrix B is diagonalizable because it is a 2 \times 2 matrix with distinct eigenvalues.

Matrix D is already diagonal!
How to diagonalize a matrix A:

1. Find the eigenvalues of A using the characteristic polynomial.
2. For each eigenvalue λ of A, compute a basis B_λ for the λ-eigenspace.
3. If there are fewer than n total vectors in the union of all of the eigenspace bases B_λ, then the matrix is not diagonalizable.
4. Otherwise, the n vectors v_1, v_2, \ldots, v_n in your eigenspace bases are linearly independent, and $A = CDC^{-1}$ for

$$C = \begin{pmatrix} | & | & \cdots & | \hline v_1 & v_2 & \cdots & v_n \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where λ_i is the eigenvalue for v_i.

Why is the Diagonalization Theorem true?

Proof

A diagonalizable implies A has n linearly independent eigenvectors: Suppose $A = CD^{-1}$, where D is diagonal with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$. Let v_1, v_2, \ldots, v_n be the columns of C. They are linearly independent because C is invertible. So $Ce_i = v_i$, hence $C^{-1}v_i = e_i$.

$Av_i = CDC^{-1}v_i = CDe_i = C(\lambda_i e_i) = \lambda_i Ce_i = \lambda_i v_i$.

Hence v_i is an eigenvector of A with eigenvalue λ_i. So the columns of C form n linearly independent eigenvectors of A, and the diagonal entries of D are the eigenvalues.

A has n linearly independent eigenvectors implies A is diagonalizable: Suppose A has n linearly independent eigenvectors v_1, v_2, \ldots, v_n, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Let C be the invertible matrix with columns v_1, v_2, \ldots, v_n. Let $D = C^{-1}AC$.

$De_i = C^{-1}ACe_i = C^{-1}Av_i = C^{-1}(\lambda_i v_i) = \lambda_i C^{-1}v_i = \lambda_i e_i$.

Hence D is diagonal, with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$. Solving $D = C^{-1}AC$ for A gives $A = CDC^{-1}$.
Non-Distinct Eigenvalues

Definition
Let \(\lambda \) be an eigenvalue of a square matrix \(A \). The **geometric multiplicity** of \(\lambda \) is the dimension of the \(\lambda \)-eigenspace.

Theorem
Let \(\lambda \) be an eigenvalue of a square matrix \(A \). Then

\[
1 \leq \text{(the geometric multiplicity of } \lambda) \leq \text{(the algebraic multiplicity of } \lambda).
\]

The proof is beyond the scope of this course.

Corollary
Let \(\lambda \) be an eigenvalue of a square matrix \(A \). If the algebraic multiplicity of \(\lambda \) is 1, then the geometric multiplicity is also 1: the eigenspace is a line.

The Diagonalization Theorem (Alternate Form)
Let \(A \) be an \(n \times n \) matrix. The following are equivalent:

1. \(A \) is diagonalizable.
2. The sum of the geometric multiplicities of the eigenvalues of \(A \) equals \(n \).
3. The sum of the algebraic multiplicities of the eigenvalues of \(A \) equals \(n \), and the geometric multiplicity equals the algebraic multiplicity of each eigenvalue.
Non-Distinct Eigenvalues

Examples

Example

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example, $A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix}$ has eigenvalues -1 and 2, so it is diagonalizable.

Example

The matrix $A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ has characteristic polynomial

$$f(\lambda) = - (\lambda - 1)^2(\lambda - 2).$$

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3. We showed before that the geometric multiplicity of 1 is 2 (the 1-eigenspace has dimension 2). The eigenvalue 2 automatically has geometric multiplicity 1. Hence the geometric multiplicities add up to 3, so A is diagonalizable.
Example

The matrix \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) has characteristic polynomial \(f(\lambda) = (\lambda - 1)^2 \).

It has one eigenvalue 1 of algebraic multiplicity 2.

We showed before that the geometric multiplicity of 1 is 1 (the 1-eigenspace has dimension 1).

Since the geometric multiplicity is smaller than the algebraic multiplicity, the matrix is not diagonalizable.
A matrix A is **diagonalizable** if it is similar to a diagonal matrix D: $A = CDC^{-1}$.

It is easy to take powers of diagonalizable matrices: $A^r = CD^r C^{-1}$.

An $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors v_1, v_2, \ldots, v_n, in which case $A = CDC^{-1}$ for

$$
C = \begin{pmatrix}
v_1 & v_2 & \cdots & v_n \\
\end{pmatrix}, \\
D = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}.
$$

If A has n distinct eigenvalues, then it is diagonalizable.

The **geometric multiplicity** of an eigenvalue λ is the dimension of the λ-eigenspace.

$1 \leq \text{(geometric multiplicity)} \leq \text{(algebraic multiplicity)}$.

An $n \times n$ matrix is diagonalizable if and only if the sum of the geometric multiplicities is n.