WeBWorK on determinants due today at 11:59pm.

The quiz on Friday covers §§5.1, 5.2, 5.3.

My office is Skiles 244 and Rabin office hours are: Mondays, 12–1pm; Wednesdays, 1–3pm.
Definition

Let A be an $n \times n$ matrix.

1. An **eigenvector** of A is a nonzero vector v in \mathbb{R}^n such that $Av = \lambda v$, for some λ in \mathbb{R}.

2. An **eigenvalue** of A is a number λ in \mathbb{R} such that the equation $Av = \lambda v$ has a nontrivial solution.

3. If λ is an eigenvalue of A, the **λ-eigenspace** is the solution set of $(A - \lambda I_n)x = 0$.
An eigenvector of a matrix A is a nonzero vector v such that:

- Av is a multiple of v, which means Av is collinear with v, which means Av and v are on the same line through the origin.

v is an eigenvector

w is not an eigenvector
Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)? v is an eigenvector with eigenvalue -1.

[vw]
Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

w is an eigenvector with eigenvalue 1.
Eigenspaces
Geometry; example

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be
the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

u is not an eigenvector.
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

Neither is z.

[interactive]
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

The 1-eigenspace is L
(all the vectors x where $Ax = x$).
Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

The (-1)-eigenspace is the line $y = x$ (all the vectors x where $Ax = -x$).
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

v is an eigenvector with eigenvalue 0.
Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

w is an eigenvector with eigenvalue 1.
Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

u is *not* an eigenvector.
Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

Neither is z.

([interactive])
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

The 1-eigenspace is the x-axis (all the vectors x where $Ax = x$).
Eigenspaces
Geometry; example

Let \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) be the vertical projection onto the \(x \)-axis, and let \(A \) be the matrix for \(T \).

Question: What are the eigenvalues and eigenspaces of \(A \)? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

The 0-eigenspace is the **y-axis**
(all the vectors \(x \) where \(Ax = 0x \)).
Let
\[A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \]
so \(T(x) = Ax \) is a shear in the \(x \)-direction.

Question: What are the eigenvalues and eigenspaces of \(A \)? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

Vectors \(v \) above the \(x \)-axis are moved right but not up…

so they’re not eigenvectors.

[interactive]
Let

\[A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \]

so \(T(x) = Ax \) is a shear in the \(x \)-direction.

Question: What are the eigenvalues and eigenspaces of \(A \)? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

Vectors \(w \) below the \(x \)-axis are moved left but not down... so they’re not eigenvectors.
Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so $T(x) = Ax$ is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

u is an eigenvector with eigenvalue 1.
Let

\[A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \]

so \(T(x) = Ax \) is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of \(A \)? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

The 1-eigenspace is the x-axis (all the vectors \(x \) where \(Ax = x \)).
Eigenspaces
Geometry; example

Let

\[A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \]

so \(T(x) = Ax \) is a shear in the \(x \)-direction.

Question: What are the eigenvalues and eigenspaces of \(A \)? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

There are no other eigenvectors.
Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be counterclockwise rotation by 45°, and let \(A \) be the matrix for \(T \).

Find an eigenvector of \(A \) without doing any computations.

A. Okay.
B. No way.

Answer: B. No way. There are no eigenvectors!
Section 6.2

The Characteristic Polynomial
The Characteristic Polynomial

Let A be a square matrix.

\[\lambda \text{ is an eigenvalue of } A \iff Ax = \lambda x \text{ has a nontrivial solution} \]
\[\iff (A - \lambda I)x = 0 \text{ has a nontrivial solution} \]
\[\iff A - \lambda I \text{ is not invertible} \]
\[\iff \det(A - \lambda I) = 0. \]

This gives us a way to compute the eigenvalues of A.

Definition
Let A be a square matrix. The characteristic polynomial of A is

\[f(\lambda) = \det(A - \lambda I). \]

The characteristic equation of A is the equation

\[f(\lambda) = \det(A - \lambda I) = 0. \]

Important
The eigenvalues of A are the roots of the characteristic polynomial $f(\lambda) = \det(A - \lambda I)$.
The Characteristic Polynomial

Example

Question: What are the eigenvalues of

\[A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \]?

Answer: First we find the characteristic polynomial:

\[
f(\lambda) = \det(A - \lambda I) = \det \left[\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right] = \det \begin{pmatrix} 5 - \lambda & 2 \\ 2 & 1 - \lambda \end{pmatrix}
\]

\[
= (5 - \lambda)(1 - \lambda) - 2 \cdot 2 \\
= \lambda^2 - 6\lambda + 1.
\]

The eigenvalues are the roots of the characteristic polynomial, which we can find using the quadratic formula:

\[
\lambda = \frac{6 \pm \sqrt{36 - 4}}{2} = 3 \pm 2\sqrt{2}.
\]
Question: What is the characteristic polynomial of

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]?

Answer:

\[f(\lambda) = \det(A - \lambda I) = \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} = (a - \lambda)(d - \lambda) - bc \]

\[= \lambda^2 - (a + d)\lambda + (ad - bc) \]

What do you notice about \(f(\lambda) \)?

- The constant term is \(\det(A) \), which is zero if and only if \(\lambda = 0 \) is a root.
- The linear term \(-(a + d) \) is the negative of the sum of the diagonal entries of \(A \).

Definition

The **trace** of a square matrix \(A \) is \(\text{Tr}(A) = \text{sum of the diagonal entries of } A \).

Shortcut

The characteristic polynomial of a 2×2 matrix \(A \) is

\[f(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A). \]
The Characteristic Polynomial

Example

Question: What are the eigenvalues of the rabbit population matrix

\[A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \]?

Answer: First we find the characteristic polynomial:

\[f(\lambda) = \det(A - \lambda I) = \det \begin{pmatrix} -\lambda & 6 & 8 \\ \frac{1}{2} & -\lambda & 0 \\ 0 & \frac{1}{2} & -\lambda \end{pmatrix} \]

\[= 8 \left(\frac{1}{4} - 0 \cdot -\lambda \right) - \lambda \left(\lambda^2 - 6 \cdot \frac{1}{2} \right) \]

\[= -\lambda^3 + 3\lambda + 2. \]

We know from before that one eigenvalue is \(\lambda = 2 \): indeed, \(f(2) = -8 + 6 + 2 = 0 \). Doing polynomial long division, we get:

\[\frac{-\lambda^3 + 3\lambda + 2}{\lambda - 2} = -\lambda^2 - 2\lambda - 1 = -(\lambda + 1)^2. \]

Hence \(\lambda = -1 \) is also an eigenvalue.
Definition
The (algebraic) multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

This is not a very interesting notion yet. It will become interesting when we also define geometric multiplicity later.

Example
In the rabbit population matrix, $f(\lambda) = -(\lambda - 2)(\lambda + 1)^2$, so the algebraic multiplicity of the eigenvalue 2 is 1, and the algebraic multiplicity of the eigenvalue -1 is 2.

Example
In the matrix $\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$, $f(\lambda) = (\lambda - (3 - 2\sqrt{2}))(\lambda - (3 + 2\sqrt{2}))$, so the algebraic multiplicity of $3 + 2\sqrt{2}$ is 1, and the algebraic multiplicity of $3 - 2\sqrt{2}$ is 1.
Fact: If A is an $n \times n$ matrix, the characteristic polynomial

$$f(\lambda) = \det(A - \lambda I)$$

turns out to be a polynomial of degree n, and its roots are the eigenvalues of A:

$$f(\lambda) = (-1)^n \lambda^n + a_{n-1}\lambda^{n-1} + a_{n-2}\lambda^{n-2} + \cdots + a_1\lambda + a_0.$$
It’s easy to factor quadratic polynomials:

\[x^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}. \]

It’s less easy to factor cubics, quartics, and so on:

\[x^3 + bx^2 + cx + d = 0 \implies x = \text{???} \]
\[x^4 + bx^3 + cx^2 + dx + e = 0 \implies x = \text{???} \]

Read about factoring polynomials by hand in §6.2.
We did two different things today.

First we talked about the geometry of eigenvalues and eigenvectors:

- Eigenvectors are vectors \(\mathbf{v} \) such that \(\mathbf{v} \) and \(A\mathbf{v} \) are on the same line through the origin.
- You can pick out the eigenvectors geometrically if you have a picture of the associated transformation.

Then we talked about characteristic polynomials:

- We learned to find the eigenvalues of a matrix by computing the roots of the characteristic polynomial \(p(\lambda) = \det(A - \lambda I) \).
- For a \(2 \times 2 \) matrix \(A \), the characteristic polynomial is just

\[
p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A).
\]

- The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic polynomial.