Announcements
Wednesday, October 31

- WeBWorK on determinents due today at 11:59pm.

- The quiz on Friday covers §§5.1, 5.2, 5.3.

- My office is Skiles 244 and Rabinoffice hours are: Mondays, 12–1pm; Wednesdays, 1–3pm.
Definition

Let A be an $n \times n$ matrix.

1. **An eigenvector** of A is a nonzero vector v in \mathbb{R}^n such that $Av = \lambda v$, for some λ in \mathbb{R}.

2. **An eigenvalue** of A is a number λ in \mathbb{R} such that the equation $Av = \lambda v$ has a nontrivial solution.

3. If λ is an eigenvalue of A, the λ-**eigenspace** is the solution set of $(A - \lambda I_n)x = 0$.

An eigenvector of a matrix A is a nonzero vector v such that:

- Av is a multiple of v, which means
- Av is collinear with v, which means
- Av and v are on the same line through the origin.

v is an eigenvector

w is not an eigenvector
Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

v is an eigenvector with eigenvalue -1.

[interactive]
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

w is an eigenvector with eigenvalue 1.
Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

u is *not* an eigenvector.
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)? Neither is z.
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

The 1-eigenspace is L (all the vectors x where $Ax = x$).
Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be reflection over the line L defined by $y = -x$, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

The (-1)-eigenspace is the line $y = x$ (all the vectors x where $Ax = -x$).
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

v is an eigenvector with eigenvalue 0.
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

w is an eigenvector with eigenvalue 1.
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

u is *not* an eigenvector.
Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

Neither is z.

[interactive]
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

The 1-eigenspace is the x-axis (all the vectors x where $Ax = x$).

[interactive]
Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

The 0-eigenspace is **the y-axis** (all the vectors x where $Ax = 0x$).
Let
\[
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},
\]
so \(T(x) = Ax\) is a shear in the \(x\)-direction.

Question: What are the eigenvalues and eigenspaces of \(A\)? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

Vectors \(v\) above the \(x\)-axis are moved right but not up... so they’re not eigenvectors.
Eigenspaces
Geometry; example

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$,

so $T(x) = Ax$ is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

Vectors w below the x-axis are moved left but not down... so they’re not eigenvectors.

[interactive]
Let

\[A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \]

so \(T(x) = Ax \) is a shear in the \(x \)-direction.

Question: What are the eigenvalues and eigenspaces of \(A \)? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

\(u \) is an eigenvector with eigenvalue 1.
Eigenspaces
Geometry; example

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so $T(x) = Ax$ is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

The 1-eigenspace is the x-axis (all the vectors x where $Ax = x$).
Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so \(T(x) = Ax \) is a shear in the \(x \)-direction.

Question: What are the eigenvalues and eigenspaces of \(A \)? No computations!

Does anyone see any eigenvectors (vectors that don’t move off their line)?

There are no other eigenvectors.

[interactive]
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be counterclockwise rotation by 45°, and let A be the matrix for T.

Find an eigenvector of A without doing any computations.

A. Okay.

B. No way. There are no eigenvectors!

Poll Answer: B. No way.
Section 6.2

The Characteristic Polynomial
The Characteristic Polynomial

Let A be a square matrix.

λ is an eigenvalue of A \iff $Ax = \lambda x$ has a nontrivial solution

\iff $(A - \lambda I)x = 0$ has a nontrivial solution

\iff $A - \lambda I$ is not invertible

\iff $\det(A - \lambda I) = 0$.

This gives us a way to compute the eigenvalues of A.

Definition

Let A be a square matrix. The **characteristic polynomial** of A is

$$f(\lambda) = \det(A - \lambda I).$$

The **characteristic equation** of A is the equation

$$f(\lambda) = \det(A - \lambda I) = 0.$$

Important

The eigenvalues of A are the roots of the characteristic polynomial $f(\lambda) = \det(A - \lambda I)$.
The Characteristic Polynomial
Example

Question: What are the eigenvalues of

\[A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \]?
The Characteristic Polynomial

Example

Question: What is the characteristic polynomial of

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]?

Answer:

\[f(\lambda) = \det(A - \lambda I) = \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} = (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + \det(A). \]

What do you notice about \(f(\lambda) \)?

- The constant term is \(\det(A) \), which is zero if and only if \(\lambda = 0 \) is a root.
- The linear term \(- (a + d)\) is the negative of the sum of the diagonal entries of \(A \).

Definition

The **trace** of a square matrix \(A \) is \(\text{Tr}(A) = \text{sum of the diagonal entries of } A \).

Shortcut

The characteristic polynomial of a \(2 \times 2 \) matrix \(A \) is

\[f(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A). \]
Question: What are the eigenvalues of the rabbit population matrix

\[A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \]?
Algebraic Multiplicity

Definition

The *(algebraic) multiplicity* of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

This is not a very interesting notion *yet*. It will become interesting when we also define *geometric* multiplicity later.

Example

In the rabbit population matrix, $f(\lambda) = -(\lambda - 2)(\lambda + 1)^2$, so the algebraic multiplicity of the eigenvalue 2 is 1, and the algebraic multiplicity of the eigenvalue -1 is 2.

Example

In the matrix $\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$, $f(\lambda) = (\lambda - (3 - 2\sqrt{2}))(\lambda - (3 + 2\sqrt{2}))$, so the algebraic multiplicity of $3 + 2\sqrt{2}$ is 1, and the algebraic multiplicity of $3 - 2\sqrt{2}$ is 1.
Fact: If A is an $n \times n$ matrix, the characteristic polynomial

$$f(\lambda) = \det(A - \lambda I)$$

turns out to be a polynomial of degree n, and its roots are the eigenvalues of A:

$$f(\lambda) = (-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + a_{n-2} \lambda^{n-2} + \cdots + a_1 \lambda + a_0.$$
Factoring the Characteristic Polynomial

It’s easy to factor quadratic polynomials:

\[x^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}. \]

It’s less easy to factor cubics, quartics, and so on:

\[x^3 + bx^2 + cx + d = 0 \implies x = ??? \]
\[x^4 + bx^3 + cx^2 + dx + e = 0 \implies x = ??? \]

Read about factoring polynomials by hand in §6.2.
We did two different things today.

First we talked about the geometry of eigenvalues and eigenvectors:

- Eigenvectors are vectors v such that v and Av are on the same line through the origin.
- You can pick out the eigenvectors geometrically if you have a picture of the associated transformation.

Then we talked about characteristic polynomials:

- We learned to find the eigenvalues of a matrix by computing the roots of the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$.
- For a 2×2 matrix A, the characteristic polynomial is just
 \[p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A). \]
- The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic polynomial.