WeBWorK on determinents due on Wednesday at 11:59pm.

The quiz on Friday covers §§5.1, 5.2, 5.3.

My office is Skiles 244 and Rabin office hours are: Mondays, 12–1pm; Wednesdays, 1–3pm.
Chapter 6

Eigenvalues and Eigenvectors
Section 6.1

Eigenvalues and Eigenvectors
A Biology Question

Motivation

In a population of rabbits:

1. half of the newborn rabbits survive their first year;
2. of those, half survive their second year;
3. their maximum life span is three years;
4. rabbits have 0, 6, 8 baby rabbits in their three years, respectively.

If you know the population one year, what is the population the next year?

- $f_n = \text{first-year rabbits in year } n$
- $s_n = \text{second-year rabbits in year } n$
- $t_n = \text{third-year rabbits in year } n$

The rules say:

$$\begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix} = \begin{pmatrix} f_{n+1} \\ s_{n+1} \\ t_{n+1} \end{pmatrix}.$$

Let $A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$ and $v_n = \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix}$. Then $Av_n = v_{n+1}$.

difference equation
If you know v_0, what is v_{10}?

$$v_{10} = Av_9 = AAv_8 = \cdots = A^{10}v_0.$$

This makes it easy to compute examples by computer: [interactive]

<table>
<thead>
<tr>
<th>v_0</th>
<th>v_{10}</th>
<th>v_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>30189</td>
<td>61316</td>
</tr>
<tr>
<td>7</td>
<td>7761</td>
<td>15095</td>
</tr>
<tr>
<td>9</td>
<td>1844</td>
<td>3881</td>
</tr>
<tr>
<td>1</td>
<td>9459</td>
<td>19222</td>
</tr>
<tr>
<td>2</td>
<td>2434</td>
<td>4729</td>
</tr>
<tr>
<td>3</td>
<td>577</td>
<td>1217</td>
</tr>
<tr>
<td>4</td>
<td>28856</td>
<td>58550</td>
</tr>
<tr>
<td>7</td>
<td>7405</td>
<td>14428</td>
</tr>
<tr>
<td>8</td>
<td>1765</td>
<td>3703</td>
</tr>
</tbody>
</table>

What do you notice about these numbers?

1. Eventually, each segment of the population doubles every year: $Av_n = v_{n+1} = 2v_n$.

2. The ratios get close to $(16 : 4 : 1)$:

$$v_n = (\text{scalar}) \cdot \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}.$$

Translation: 2 is an eigenvalue, and $\begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}$ is an eigenvector!
Eigenvectors and Eigenvalues

Definition
Let A be an $n \times n$ matrix.

Eigenvalues and eigenvectors are only for square matrices.

1. An **eigenvector** of A is a nonzero vector v in \mathbb{R}^n such that $Av = \lambda v$, for some λ in \mathbb{R}. In other words, Av is a multiple of v.

2. An **eigenvalue** of A is a number λ in \mathbb{R} such that the equation $Av = \lambda v$ has a nontrivial solution.

If $Av = \lambda v$ for $v \neq 0$, we say λ is the **eigenvalue for** v, and v is an **eigenvector for** λ.

Note: Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

This is the most important definition in the course.
Verifying Eigenvectors

Example

\[A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \quad v = \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix} \]

Multiply:

\[Av = \]

Hence \(v \) is an eigenvector of \(A \), with eigenvalue \(\lambda = 2 \).

Example

\[A = \begin{pmatrix} 2 & 2 \\ -4 & 8 \end{pmatrix} \quad v = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

Multiply:

\[Av = \]

Hence \(v \) is an eigenvector of \(A \), with eigenvalue \(\lambda = 4 \).
Poll

Which of the vectors

A. \((1,1)\)
B. \((1,-1)\)
C. \((-1,1)\)
D. \((2,1)\)
E. \((0,0)\)

are eigenvectors of the matrix

\[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
\end{pmatrix}
\]

What are the eigenvalues?

\[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
\end{pmatrix} = 2 \begin{pmatrix}
1 \\
1 \\
\end{pmatrix}
\]
eigenvector with eigenvalue 2

\[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
-1 \\
\end{pmatrix} = 0 \begin{pmatrix}
1 \\
-1 \\
\end{pmatrix}
\]
eigenvector with eigenvalue 0

\[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
-1 \\
1 \\
\end{pmatrix} = 0 \begin{pmatrix}
-1 \\
1 \\
\end{pmatrix}
\]
eigenvector with eigenvalue 0

\[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
2 \\
1 \\
\end{pmatrix} = \begin{pmatrix}
3 \\
3 \\
\end{pmatrix}
\]
not an eigenvector

\[
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
\end{pmatrix}
\]
is never an eigenvector
Verifying Eigenvalues

Question: Is $\lambda = 3$ an eigenvalue of $A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$?

In other words, does $Av = 3v$ have a nontrivial solution?

... does $Av - 3v = 0$ have a nontrivial solution?

... does $(A - 3I)v = 0$ have a nontrivial solution?

We know how to answer that! Row reduction!

$A - 3I =$
Eigenspaces

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ-eigenspace of A is the set of all eigenvectors of A with eigenvalue λ, plus the zero vector:

\[
\lambda\text{-eigenspace} = \{ v \text{ in } \mathbb{R}^n \mid Av = \lambda v \} \\
= \{ v \text{ in } \mathbb{R}^n \mid (A - \lambda I)v = 0 \} \\
= \text{Nul}(A - \lambda I).
\]

Since the λ-eigenspace is a null space, it is a *subspace* of \mathbb{R}^n.

How do you find a basis for the λ-eigenspace? Parametric vector form!
Find a basis for the 3-eigenspace of

\[A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}. \]
Eigenspaces

Example

Find a basis for the 2-eigenspace of

\[
A = \begin{pmatrix}
\frac{7}{2} & 0 & 3 \\
-\frac{3}{2} & 2 & -3 \\
-\frac{3}{2} & 0 & -1
\end{pmatrix}.
\]
Find a basis for the $\frac{1}{2}$-eigenspace of

$$A = \begin{pmatrix} 7/2 & 0 & 3 \\ -3/2 & 2 & -3 \\ -3/2 & 0 & -1 \end{pmatrix}.$$
Eigenspaces

Example: picture

\[A = \begin{pmatrix} 7/2 & 0 & 3 \\ -3/2 & 2 & -3 \\ -3/2 & 0 & -1 \end{pmatrix}. \]

We computed bases for the 2-eigenspace and the 1/2-eigenspace:

2-eigenspace: \[\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\} \]

1/2-eigenspace: \[\left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\} \]

Hence the 2-eigenspace is a plane and the 1/2-eigenspace is a line.
Let A be an $n \times n$ matrix and let λ be a number.

1. λ is an eigenvalue of A if and only if $(A - \lambda I)x = 0$ has a nontrivial solution, if and only if $\text{Nul}(A - \lambda I) \neq \{0\}$.

2. In this case, finding a basis for the λ-eigenspace of A means finding a basis for $\text{Nul}(A - \lambda I)$ as usual, i.e. by finding the parametric vector form for the general solution to $(A - \lambda I)x = 0$.

3. The eigenvectors with eigenvalue λ are the nonzero elements of $\text{Nul}(A - \lambda I)$, i.e. the nontrivial solutions to $(A - \lambda I)x = 0$.
We’ve seen that finding eigenvectors for a given eigenvalue is a row reduction problem.

Finding all of the eigenvalues of a matrix is not a row reduction problem! We'll see how to do it in general next time. For now:

Fact: The eigenvalues of a triangular matrix are the diagonal entries.
Fact: A is invertible if and only if 0 is not an eigenvalue of A.
Fact: If \(v_1, v_2, \ldots, v_k \) are eigenvectors of \(A \) with distinct eigenvalues \(\lambda_1, \ldots, \lambda_k \), then \(\{v_1, v_2, \ldots, v_k\} \) is linearly independent.

Why? If \(k = 2 \), this says \(v_2 \) can’t lie on the line through \(v_1 \). But the line through \(v_1 \) is contained in the \(\lambda_1 \)-eigenspace, and \(v_2 \) does not have eigenvalue \(\lambda_1 \).

In general: see §6.1 (or work it out for yourself; it’s not too hard).

Consequence: An \(n \times n \) matrix has at most \(n \) distinct eigenvalues.
The Invertible Matrix Theorem
Addenda

We have a couple of new ways of saying “A is invertible” now:

The Invertible Matrix Theorem
Let A be a square $n \times n$ matrix, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation $T(x) = Ax$. The following statements are equivalent.

1. A is invertible.

2. T is invertible.

3. The reduced row echelon form of A is I_n.

4. A has n pivots.

5. $Ax = 0$ has no solutions other than the trivial one.

6. $\text{Nul}(A) = \{0\}$.

7. nullity$(A) = 0$.

8. The columns of A are linearly independent.

9. The columns of A form a basis for \mathbb{R}^n.

10. T is one-to-one.

11. $Ax = b$ is consistent for all b in \mathbb{R}^n.

12. $Ax = b$ has a unique solution for each b in \mathbb{R}^n.

13. The columns of A span \mathbb{R}^n.

14. $\text{Col} A = \mathbb{R}^m$.

15. $\dim \text{Col} A = m$.

16. rank $A = m$.

17. T is onto.

18. There exists a matrix B such that $AB = I_n$.

19. There exists a matrix B such that $BA = I_n$.

20. The determinant of A is not equal to zero.

21. The number 0 is not an eigenvalue of A.
Summary

- **Eigenvectors** and **eigenvalues** are the most important concepts in this course.
- Eigenvectors are by definition nonzero; eigenvalues may be zero.
- The eigenvalues of a triangular matrix are the diagonal entries.
- A matrix is invertible if and only if zero is not an eigenvalue.
- Eigenvectors with distinct eigenvalues are linearly independent.
- The λ-eigenspace is the set of all λ-eigenvectors, plus the zero vector.
- You can compute a basis for the λ-eigenspace by finding the parametric vector form of the solutions of $(A - \lambda I_n)x = 0$.