- > You should already have the link to view your graded midterm online.
 - You won't get the hard copy back.
 - Print the PDF if you want one.
- Send regrade requests by **tomorrow**.
- ▶ WeBWorK 4.5 is due on Wednesday at 11:59pm.
- No quiz on Friday!
- ▶ Withdraw deadline is this Saturday, 10/27.
- My office is Skiles 244 and Rabinoffice hours are: Mondays, 12–1pm; Wednesdays, 1–3pm.

Chapter 5

Determinants

Section 5.1

Determinants: Definition

Orientation

Recall: This course is about learning to:

- Solve the matrix equation Ax = b
 We've said most of what we'll say about this topic now.
- Solve the matrix equation Ax = λx (eigenvalue problem)
 We are now aiming at this.
- Almost solve the equation Ax = b This will happen later.

The next topic is *determinants*.

This is a completely magical function that takes a square matrix and gives you a number.

It is a very complicated function—the formula for the determinant of a 10 \times 10 matrix has 3,628,800 summands—so instead of writing down the formula, we'll give other ways to compute it.

Today is mostly about the *theory* of the determinant; in the next lecture we will focus on *computation*.

A Definition of Determinant

Definition

The **determinant** is a function

- determinants are only for square matrices!

det: $\{n \times n \text{ matrices}\} \longrightarrow \mathbf{R}$

with the following properties:

- 1. If you do a row replacement on a matrix, the determinant doesn't change.
- 2. If you scale a row by c, the determinant is multiplied by c.
- 3. If you swap two rows of a matrix, the determinant is multiplied by -1.
- 4. $\det(I_n) = 1$.

Example:

A Definition of Determinant

Definition

The **determinant** is a function

- determinants are only for square matrices!

det: $\{n \times n \text{ matrices}\} \longrightarrow \mathbf{R}$

with the following properties:

- 1. If you do a row replacement on a matrix, the determinant doesn't change.
- 2. If you scale a row by c, the determinant is multiplied by c.
- 3. If you swap two rows of a matrix, the determinant is multiplied by -1.
- 4. $\det(I_n) = 1$.

This is a *definition* because it tells you how to compute the determinant: row reduce!

It's not at all obvious that you get the same determinant if you row reduce in two different ways, but this is magically true!

Special Cases

Why?

Special Cases

Special Case 2 If A is upper-triangular, then the determinant is the product of the diagonal entries: $det\begin{pmatrix} a & \star & \star \\ 0 & b & \star \\ 0 & 0 & c \end{pmatrix} = abc.$

Upper-triangular means the only nonzero entries are on or above the diagonal. Why?

Computing Determinants

Theorem

Let A be a square matrix. Suppose you do some number of row operations on A to get a matrix B in row echelon form. Then

$$det(A) = (-1)^r \frac{(\text{product of the diagonal entries of } B)}{(\text{product of the scaling factors})},$$

where r is the number of row swaps.

Why?

Remark

This is generally the fastest way to compute a determinant of a large matrix, either by hand or by computer.

Row reduction is $O(n^3)$; cofactor expansion (next time) is $O(n!) \sim O(n^n \sqrt{n})$.

This is important in real life, when you're usually working with matrices with a gazillion columns.

Computing Determinants Example

Computing Determinants 2 × 2 Example

Let's compute the determinant of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, a general 2 × 2 matrix.

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$$

Otherwise,

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$$

In both cases, the determinant magically turns out to be

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Poll

Theorem

A square matrix A is invertible if and only if det(A) is nonzero.

Why?

- ▶ If *A* is invertible, then its reduced row echelon form is the identity matrix, which has determinant equal to 1.
- If A is not invertible, then its reduced row echelon form has a zero row, hence has zero determinant.
- Doing row operations doesn't change whether the determinant is zero.

Determinants and Products

Theorem If A and B are two $n \times n$ matrices, then

 $\det(AB) = \det(A) \cdot \det(B).$

Why?

Theorem If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.

Why?

Recall: The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose rows are the columns of A. In other words, the ij entry of A^T is a_{ij} .

Determinants and Transposes

Theorem

If A is a square matrix, then

$$\det(A) = \det(A^{T}),$$

where A^{T} is the transpose of A.

Example: det
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = det \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
.

As a consequence, det behaves the same way with respect to *column* operations as row operations.

Corollary \leftarrow an immediate consequence of a theorem If A has a zero column, then det(A) = 0.

Corollary

The determinant of a *lower*-triangular matrix is the product of the diagonal entries.

(The transpose of a lower-triangular matrix is upper-triangular.)

Section 5.3

Determinants and Volumes

Now we discuss a completely different description of (the absolute value of) the determinant, in terms of volumes.

This is a crucial component of the change-of-variables formula in multivariable calculus.

The columns v_1, v_2, \ldots, v_n of an $n \times n$ matrix A give you n vectors in \mathbb{R}^n . These determine a **parallelepiped** P.

Theorem

Let A be an $n \times n$ matrix with columns v_1, v_2, \ldots, v_n , and let P be the parallelepiped determined by A. Then

(volume of P) = $|\det(A)|$.

Theorem

Let A be an $n \times n$ matrix with columns v_1, v_2, \ldots, v_n , and let P be the parallelepiped determined by A. Then

```
(volume of P) = |\det(A)|.
```

Sanity check: the volume of P is zero \iff the columns are *linearly dependent* (P is "flat") \iff the matrix A is not invertible.

Why is the theorem true? You only have to check that the volume behaves the same way under row operations as |det| does.

Note that the volume of the unit cube (the parallelepiped defined by the identity matrix) is 1.

Examples in \mathbf{R}^2

$$det \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix} = 3$$

$$\det \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = -2$$

(Should the volume really be -2?)

$$\det \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = 0$$

Theorem

Let A be an $n \times n$ matrix with columns v_1, v_2, \ldots, v_n , and let P be the parallelepiped determined by A. Then

```
(volume of P) = |\det(A)|.
```

This is even true for curvy shapes, in the following sense.

Theorem

Let A be an $n \times n$ matrix, and let T(x) = Ax. If S is any region in \mathbb{R}^n , then

(volume of
$$T(S)$$
) = $|\det(A)|$ (volume of S).

If S is the unit cube, then T(S) is the parallelepiped defined by the columns of A, since the columns of A are $T(e_1), T(e_2), \ldots, T(e_n)$. In this case, the second theorem is the same as the first.

Theorem

Let A be an $n \times n$ matrix, and let T(x) = Ax. If S is any region in \mathbb{R}^n , then

(volume of
$$T(S)$$
) = $|\det(A)|$ (volume of S).

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is scaled by $|\det(A)|$; then you use *calculus* to reduce to the previous situation!

Example

Theorem

Let A be an $n \times n$ matrix, and let T(x) = Ax. If S is any region in \mathbb{R}^n , then

(volume of
$$T(S)$$
) = $|\det(A)|$ (volume of S).

Example: Let S be the unit disk in \mathbf{R}^2 , and let T(x) = Ax for

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

Note that det(A) = 3.

Summary

Magical Properties of the Determinant

- 1. There is one and only one function det: {square matrices} $\rightarrow R$ satisfying the properties (1)–(4) on the second slide.
- 2. A is invertible if and only if $det(A) \neq 0$.
- 3. The determinant of an upper- or lower-triangular matrix is the product of the diagonal entries.
- 4. If we row reduce A to row echelon form B using r swaps, then

$$\det(A) = (-1)^r \frac{(\text{product of the diagonal entries of } B)}{(\text{product of the scaling factors})}$$

- 5. $\det(AB) = \det(A) \det(B)$ and $\det(A^{-1}) = \det(A)^{-1}$.
- 6. $\det(A) = \det(A^{T}).$
- 7. $|\det(A)|$ is the volume of the parallelepiped defined by the columns of A.
- If A is an n × n matrix with transformation T(x) = Ax, and S is a subset of Rⁿ, then the volume of T(S) is |det(A)| times the volume of S. (Even for curvy shapes S.)