Please fill out the mid-semester survey under “Quizzes” on Canvas.

WeBWorK 3.7, 3.9, 4.1 are due today at 11:59pm.

The quiz on Friday covers §§3.7, 3.9, 4.1.

My office is Skiles 244 and Rabinoffice hours are: Mondays, 12–1pm; Wednesdays, 1–3pm.
Section 4.3

Linear Transformations
Linear Transformations
Motivation

In the last two lectures we have been asking questions about transformations, and answering them in the case of matrix transformations.

However, sometimes it is not clear if a transformation is a matrix transformation or not.

Example
For a vector \(x \) in \(\mathbb{R}^2 \), let \(T(x) \) be the counterclockwise rotation of \(x \) by an angle \(\theta \). Is \(T(x) = Ax \) for some matrix \(A \)?

Today we will answer this question.
So, which transformations actually come from matrices?

Recall: If \(A \) is a matrix, \(u, v \) are vectors, and \(c \) is a scalar, then
\[
A(u + v) = Au + Av \quad A(cv) = cAv.
\]
So if \(T(x) = Ax \) is a matrix transformation then,
\[
T(u + v) = T(u) + T(v) \quad \text{and} \quad T(cv) = cT(v).
\]
Any matrix transformation has to satisfy this property. This property is so special that it has its own name.

Definition
A transformation \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is linear if it satisfies the above equations for all vectors \(u, v \) in \(\mathbb{R}^n \) and all scalars \(c \).
In other words, \(T \) “respects” addition and scalar multiplication.

Check: if \(T \) is linear, then
\[
T(0) = 0 \quad T(cu + dv) = cT(u) +dT(v)
\]
for all vectors \(u, v \) and scalars \(c, d \). More generally,
\[
T\left(c_1v_1 + c_2v_2 + \cdots + c_nv_n\right) = c_1 T(v_1) + c_2 T(v_2) + \cdots + c_n T(v_n).
\]
In engineering this is called superposition.
Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x) = 1.5x$. Is T linear? Check:

\[T(u + v) = \]

\[T(cv) = \]

So T satisfies the two equations, hence T is linear.

Note: T is a matrix transformation!

\[T(x) = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} x, \]

as we checked before.
Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(x) = \text{the vector } x \text{ rotated counterclockwise by an angle of } \theta.$$

Is T linear? Check:

The pictures show $T(u) + T(v) = T(u + v)$ and $T(cu) = cT(u)$.

Since T satisfies the two equations, T is linear.
Is every transformation a linear transformation?

No! For instance, $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \sin x \\ xy \\ \cos y \end{pmatrix}$ is not linear.

Why? We have to check the two defining properties. Let’s try the second:

$$T \left(c \begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} \sin(cx) \\ (cx)(cy) \\ \cos(cy) \end{pmatrix} = c \begin{pmatrix} \sin x \\ xy \\ \cos y \end{pmatrix} = cT \begin{pmatrix} x \\ y \end{pmatrix}$$

So T fails the second property. Conclusion: T is not a matrix transformation! (We could also have noted $T(0) \neq 0$.)
Which of the following transformations are linear?

A. \(T(x_1 x_2) = |x_1| x_2 \)

B. \(T(x_1 x_2) = 2x_1 + x_1 - 2x_2 \)

C. \(T(x_1 x_2) = x_1 x_2 \)

D. \(T(x_1 x_2) = 2x_1 + 1x_1 - 2x_2 \)

Poll

A. \(T((1 0) + (-1 0)) = (0 0) \neq (2 0) = T(1 0) + T(-1 0) \), so not linear.

B. Linear.

C. \(T(2(1 1)) = (4 2) \neq 2 T(1 1) \), so not linear.

D. \(T(0 0) = (1 0) \neq 0 \), so not linear.

Remark: in fact, \(T \) is linear if and only if each entry of the output is a linear function of the entries of the input, with no constant terms. Check this!
We will see that a *linear* transformation T is a matrix transformation: $T(x) = Ax$.

But what matrix does T come from? What is A?

Here's how to compute it.
Unit Coordinate Vectors

Definition

The unit coordinate vectors in \mathbb{R}^n are

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \ldots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

This is what e_1, e_2, \ldots mean, for the rest of the class.

Note: if A is an $m \times n$ matrix with columns v_1, v_2, \ldots, v_n, then $Ae_i = v_i$ for $i = 1, 2, \ldots, n$: multiplying a matrix by e_i gives you the ith column.
Recall: A matrix A defines a linear transformation T by $T(x) = Ax$.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let

$$A = \begin{pmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \end{pmatrix}.$$

This is an $m \times n$ matrix, and T is the matrix transformation for A: $T(x) = Ax$. The matrix A is called the **standard matrix** for T.

Take-Away

Linear transformations are the same as matrix transformations.

Dictionary

Linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ \implies \begin{pmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \end{pmatrix}$

$T(x) = Ax$

$T: \mathbb{R}^n \to \mathbb{R}^m$ \implies \begin{pmatrix} m \times n matrix A \end{pmatrix}$
Linear Transformations are Matrix Transformations

Continued

Why is a linear transformation a matrix transformation?
Linear Transformations are Matrix Transformations

Example

Before, we defined a dilation transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $T(x) = 1.5x$. What is its standard matrix?

Check:

$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} = 1.5 \begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} x \\ y \end{pmatrix}. $$
Linear Transformations are Matrix Transformations

Example

Question
What is the matrix for the linear transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) defined by

\[
T(x) = x \text{ rotated counterclockwise by an angle } \theta.
\]
Question
What is the matrix for the linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

\[T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}. \]
Question
What is the matrix for the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

$T(e_2) = e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.
Question
What is the matrix for the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

$$T(e_3) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}.$$
Question
What is the matrix for the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ that reflects through the xy-plane and then projects onto the yz-plane?

\[
T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \\
T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \\
T(e_1) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}
\]

\[\Rightarrow A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.\]
Linear Transformations are Matrix Transformations

Example

Question
Define a linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ by

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 3z \\ -y - 5z \end{pmatrix}.$$

What is the standard matrix A for T?
Questions About Linear Transformations

A linear transformation is a matrix transformation, so questions about linear transformations are questions about matrices.

Question
Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that reflects through the xy-plane and then projects onto the yz-plane. Is T one-to-one?

We have $T(x) = Ax$ for

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

This does not have a pivot in the first column, so T is not one-to-one.
Linear transformations are the transformations that come from matrices.

The unit coordinate vectors e_1, e_2, \ldots are the unit vectors in the positive direction along the coordinate axes.

You compute the columns of the matrix for a linear transformation by plugging in the unit coordinate vectors.

This is useful when the transformation is specified geometrically, in terms of a formula, or any other way that isn’t as a matrix transformation.