1. Every color on my computer monitor is a vector in \mathbb{R}^3 with coordinates between 0 and 255, inclusive. The coordinates correspond to the amount of red, green, and blue in the color.

Given colors v_1, v_2, \ldots, v_p, we can form a “weighted average” of these colors by making a linear combination

$$v = c_1 v_1 + c_2 v_2 + \cdots + c_p v_p$$

with $c_1 + c_2 + \cdots + c_p = 1$. Example:

$$\begin{align*}
\frac{1}{2} & \begin{array}{c}
\text{red}
\end{array} + \frac{1}{2} & \begin{array}{c}
\text{blue}
\end{array} = \begin{array}{c}
\text{purple}
\end{array}
\end{align*}$$

Consider the colors on the right. Are these colors linearly independent? What does this tell you about the colors?

After doing this problem, check out the interactive demo, where you can adjust sliders to find a prescribed color.
2. Circle **TRUE** if the statement is always true, and circle **FALSE** otherwise.

a) If A is a 3×100 matrix of rank 2, then $\text{dim}(\text{Nul}A) = 97$.

 \[\text{TRUE} \quad \text{FALSE} \]

b) If A is an $m \times n$ matrix and $Ax = 0$ has only the trivial solution, then the columns of A form a basis for \mathbb{R}^m.

 \[\text{TRUE} \quad \text{FALSE} \]

c) The set $V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 \bigg| x - 4z = 0 \right\}$ is a subspace of \mathbb{R}^4.

 \[\text{TRUE} \quad \text{FALSE} \]

3. Let $A = \begin{pmatrix} 1 & -5 & -2 & -4 \\ 2 & 3 & 9 & 5 \\ 1 & 1 & 4 & 2 \end{pmatrix}$, and let T be the matrix transformation associated to A, so $T(x) = Ax$.

 a) What is the domain of T? What is the codomain of T? Give an example of a vector in the range of T.

 b) The RREF of A is $\begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Is there a vector in the codomain of T which is not in the range of T? Justify your answer.