Announcements
Wednesday, September 19

▶ WeBWorK 3.3, 3.4 are due today at 11:59pm.
▶ The first midterm is on this Friday, September 21.
 ▶ Midterms happen during recitation.
 ▶ The exam covers through §3.4.
 ▶ About half the problems will be conceptual, and the other half computational.
▶ There is a practice midterm posted on the website. It is meant to be similar in format and difficulty to the real midterm. Solutions are posted.
▶ Study tips:
 ▶ Drill problems in Lay. Practice the recipes until you can do them in your sleep.
 ▶ Make sure to learn the theorems and learn the definitions, and understand what they mean. There is a reference sheet on the website. Make flashcards!
 ▶ Sit down to do the practice midterm in 50 minutes, with no notes.
 ▶ Come to office hours!
▶ Double Rabinoffice hours this week: Monday 12–1; Tuesday 10–11; Wednesday 1–3; Thursday 2–4
▶ TA review session: Weber SST III classroom 1, 4:30–6pm on Thursday.
Section 3.6

Subspaces
Today we will discuss **subspaces** of \mathbb{R}^n.

A subspace turns out to be the same as a span, except we don’t know *which* vectors it’s the span of.

This arises naturally when you have, say, a plane through the origin in \mathbb{R}^3 which is *not* defined (a priori) as a span, but you still want to say something about it.

\[x + 3y + z = 0 \]
Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

1. The zero vector is in V. "not empty"
2. If u and v are in V, then $u + v$ is also in V. "closed under addition"
3. If u is in V and c is in \mathbb{R}, then cu is in V. "closed under \times scalars"

Every subspace is a span, and every span is a subspace.

A subspace is a span of some vectors, but you haven’t computed what those vectors are yet.
Definition of Subspace

Definition
A **subspace** of \(\mathbb{R}^n \) is a subset \(V \) of \(\mathbb{R}^n \) satisfying:

1. The zero vector is in \(V \).
 “not empty”
2. If \(u \) and \(v \) are in \(V \), then \(u + v \) is also in \(V \).
 “closed under addition”
3. If \(u \) is in \(V \) and \(c \) is in \(\mathbb{R} \), then \(cu \) is in \(V \).
 “closed under \(\times \) scalars”

What does this mean?

- If \(v \) is in \(V \), then all scalar multiples of \(v \) are in \(V \) by (3). That is, the line through \(v \) is in \(V \).

- If \(u, v \) are in \(V \), then \(xu \) and \(yv \) are in \(V \) for scalars \(x, y \) by (3). So \(xu + yv \) is in \(V \) by (2). So Span\{\(u, v \)\} is contained in \(V \).

- Likewise, if \(v_1, v_2, \ldots, v_n \) are all in \(V \), then Span\{\(v_1, v_2, \ldots, v_n \)\} is contained in \(V \): a subspace contains the span of any set of vectors in it.

If you pick enough vectors in \(V \), eventually their span will fill up \(V \), so:

A subspace is a span of some set of vectors in it.
Examples

Example
A line L through the origin: this contains the span of any vector in L.

Example
A plane P through the origin: this contains the span of any vectors in P.

Example
All of \mathbb{R}^n: this contains 0, and is closed under addition and scalar multiplication.

Example
The subset \{0\}: this subspace contains only one vector.

Note these are all pictures of spans! (Line, plane, space, etc.)
A **subset** of \mathbb{R}^n is any collection of vectors whatsoever.

All of the following non-examples are still subsets.

A **subspace** is a special kind of subset, which satisfies the three defining properties.

- Subset: *yes*
- Subspace: *no*
Non-Examples

Non-Example
A line L (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example
A circle C is not a subspace. Fails: 1,2,3. Think: a circle isn't a "linear space."

Non-Example
The first quadrant in \mathbb{R}^2 is not a subspace. Fails: 3 only.

Non-Example
A line union a plane in \mathbb{R}^3 is not a subspace. Fails: 2 only.
Theorem
Any \(\text{Span}\{v_1, v_2, \ldots, v_n\} \) is a subspace.

Every subspace is a span, and every span is a subspace.

Definition
If \(V = \text{Span}\{v_1, v_2, \ldots, v_n\} \), we say that \(V \) is the subspace generated by or spanned by the vectors \(v_1, v_2, \ldots, v_n \).
Poll

Which of the following are subspaces?

A. The empty set
B. The solution set to a homogeneous system of linear equations.
C. The solution set to an inhomogeneous system of linear equations.
D. The set of all vectors in \(\mathbb{R}^n \) with rational (fraction) coordinates.

For the ones which are not subspaces, which property(ies) do they not satisfy?

A. This is not a subspace: it does not contain the zero vector.
B. This is a subspace: the solution set is a span, produced by finding the parametric vector form of the solution.
C. This is not a subspace: it does not contain 0.
D. This is not a subspace: it is not closed under multiplication by scalars (e.g. by \(\pi \)).
Let \(V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \mid ab = 0 \right\} \). Let’s check if \(V \) is a subspace or not.

1. Does \(V \) contain the zero vector?

\[\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow ab = 0 \]

3. Is \(V \) closed under scalar multiplication?

Let \(\begin{pmatrix} a \\ b \end{pmatrix} \) be (an unknown vector) in \(V \).

This means: \(a \) and \(b \) are numbers such that \(ab = 0 \).

Let \(c \) be a scalar. Is \(c \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} ca \\ cb \end{pmatrix} \) in \(V \)?

This means: \((ca)(cb) = 0 \).

\[(ca)(cb) = c^2(ab) = c^2(0) = 0 \]

2. Is \(V \) closed under addition?

Let \(\begin{pmatrix} a \\ b \end{pmatrix} \) and \(\begin{pmatrix} a' \\ b' \end{pmatrix} \) be (unknown vectors) in \(V \).

This means: \(ab = 0 \) and \(a'b' = 0 \).

Is \(\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} a + a' \\ b + b' \end{pmatrix} \) in \(V \)?

This means: \((a + a')(b + b') = 0 \).

This is not true for all such \(a, a', b, b' \): for instance, \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \) are in \(V \), but their sum \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) is not in \(V \), because \(1 \cdot 1 \neq 0 \).

We conclude that \(V \) is not a subspace. A picture is above. (It doesn’t look like a span.)
An $m \times n$ matrix A naturally gives rise to two subspaces.

Definition

- The **column space** of A is the subspace of \mathbf{R}^m spanned by the columns of A. It is written $\text{Col} \ A$.

- The **null space** of A is the set of all solutions of the homogeneous equation $Ax = 0$:

$$\text{Nul} \ A = \{ \mathbf{x} \in \mathbf{R}^n \mid Ax = 0 \}.$$

This is a subspace of \mathbf{R}^n.

The column space is defined as a span, so we know it is a subspace.

Check that the null space is a subspace:
Column Space and Null Space

Example

Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Let’s compute the column space:

Let’s compute the null space:
The Null Space is a Span

The column space of a matrix A is defined to be a span (of the columns). The null space is defined to be the solution set to $Ax = 0$. It is a subspace, so it is a span.

Question
How to find vectors which span the null space?

Answer: Parametric vector form! We know that the solution set to $Ax = 0$ has a parametric form that looks like

$$x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix}$$

if, say, x_3 and x_4 are the free variables. So

$$\text{Nul } A = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Refer back to the slides for §3.4 (Solution Sets).

Note: It is much easier to define the null space first as a subspace, then find spanning vectors *later*, if we need them. This is one reason subspaces are so useful.
Subspaces

Summary

- A **subspace** is the same as a span of some number of vectors, but we haven’t computed the vectors yet.
- To any matrix is associated two subspaces, the **column space** and the **null space**:

 $\text{Col } A = \text{the span of the columns of } A$

 $\text{Nul } A = \text{the solution set of } Ax = 0.$

How do you check if a subset is a subspace?

- Is it a span? Can it be written as a span?
- Can it be written as the column space of a matrix?
- Can it be written as the null space of a matrix?
- Is it all of \mathbb{R}^n or the zero subspace $\{0\}$?
- Can it be written as a type of subspace that we’ll learn about later (eigenspaces, . . .)?

If so, then it’s automatically a subspace.

If all else fails:

- Can you verify directly that it satisfies the three defining properties?