Final exam: 6–8:50pm in **Clough 152**
- Cumulative final covers the whole class pretty evenly.
- About twice as long as a midterm.
- Common for all 1553 sections; written collaboratively.

Studying resources for the final:
- Practice final.
- Extra general practice problems posted on the website.
- Problems on midterms and practice midterms.
- Reference sheet.
- Early draft of Dan’s and my textbook.
- Problems in Lay.
- **Reading day:** is 1–3pm on December 6 in Clough 144 and 152.
- Double Rabinoffice hours:
 Monday, 12–2pm; Tuesday, 9–11am; Thursday, 10–12pm; Friday, 2–4pm.

Please fill out your CIOS survey!
- 80% response rate by 11:59pm on Thursday — extra dropped quiz
Review for the Final Exam

Selected Topics
Orthogonal Sets

Definition
A set of nonzero vectors is **orthogonal** if each pair of vectors is orthogonal. It is **orthonormal** if, in addition, each vector is a unit vector.

Example: $B_1 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$ is not orthogonal.

Example: $B_2 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ is orthogonal but not orthonormal.

Example: $B_3 = \left\{ \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ is orthonormal.

To go from an orthogonal set $\{u_1, u_2, \ldots, u_m\}$ to an orthonormal set, replace each u_i with $u_i/\|u_i\|$.

Theorem
An orthogonal set is linearly independent. In particular, it is a basis for its span.
Orthogonal Projection

Let W be a subspace of \mathbb{R}^n, and let $B = \{u_1, u_2, \ldots, u_m\}$ be an orthogonal basis for W. The orthogonal projection of a vector x onto W is

$$\text{proj}_W(x) \overset{\text{def}}{=} \sum_{i=1}^{m} \frac{x \cdot u_i}{u_i \cdot u_i} u_i = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m.$$

This is the closest vector to x that lies on W. In other words, the difference $x - \text{proj}_W(x)$ is perpendicular to W: it is in W^\perp. Notation:

$$x_W = \text{proj}_W(x) \quad x_W^\perp = x - \text{proj}_W(x).$$

So x_W is in W, x_W^\perp is in W^\perp, and $x = x_W + x_W^\perp$.
Orthogonal Projection

Special cases

Special case: If x is in W, then $x = \text{proj}_W(x)$, so

$$x = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m.$$

In other words, the \mathcal{B}-coordinates of x are

$$\left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \frac{x \cdot u_2}{u_2 \cdot u_2}, \ldots, \frac{x \cdot u_m}{u_m \cdot u_m} \right),$$

where $\mathcal{B} = \{u_1, u_2, \ldots, u_m\}$, an orthogonal basis for W.

Special case: If $W = L$ is a line, then $L = \text{Span}\{u\}$ for some nonzero vector u, and

$$\text{proj}_L(x) = \frac{x \cdot u}{u \cdot u} u$$
Let W be a subspace of \mathbb{R}^n.

Theorem
The orthogonal projection proj_W is a *linear* transformation from \mathbb{R}^n to \mathbb{R}^n. Its range is W.

If A is the matrix for proj_W, then $A^2 = A$ because projecting twice is the same as projecting once: $\text{proj}_W \circ \text{proj}_W = \text{proj}_W$.

Theorem
The only eigenvalues of A are 1 and 0.

Why?

The 1-eigenspace of A is W, and the 0-eigenspace is W^\perp.
The Gram–Schmidt Process

Let \(\{v_1, v_2, \ldots, v_m\} \) be a basis for a subspace \(W \) of \(\mathbb{R}^n \). Define:

1. \(u_1 = v_1 \)

2. \(u_2 = v_2 - \text{proj}_{\text{Span}\{u_1\}}(v_2) = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 \)

3. \(u_3 = v_3 - \text{proj}_{\text{Span}\{u_1, u_2\}}(v_3) = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2 \)

\[\vdots \]

m. \(u_m = v_m - \text{proj}_{\text{Span}\{u_1, u_2, \ldots, u_{m-1}\}}(v_m) = v_m - \sum_{i=1}^{m-1} \frac{v_m \cdot u_i}{u_i \cdot u_i} u_i \)

Then \(\{u_1, u_2, \ldots, u_m\} \) is an \textit{orthogonal} basis for the same subspace \(W \).

In fact, for each \(i \),

\[\text{Span}\{u_1, u_2, \ldots, u_i\} = \text{Span}\{v_1, v_2, \ldots, v_i\}. \]

Note if \(v_i \) is in \(\text{Span}\{v_1, v_2, \ldots, v_{i-1}\} = \text{Span}\{u_1, u_2, \ldots, u_{i-1}\} \), then \(v_i = \text{proj}_{\text{Span}\{u_1, u_2, \ldots, u_{i-1}\}}(v_i) \), so \(u_i = 0 \). So this also detects linear dependence.
Subspaces

Definition
A **subspace** of \(\mathbb{R}^n \) is a subset \(V \) of \(\mathbb{R}^n \) satisfying:

1. The zero vector is in \(V \). “not empty”
2. If \(u \) and \(v \) are in \(V \), then \(u + v \) is also in \(V \). “closed under addition”
3. If \(u \) is in \(V \) and \(c \) is in \(\mathbb{R} \), then \(cu \) is in \(V \). “closed under \(\times \) scalars”

Examples:
- Any Span\(\{v_1, v_2, \ldots, v_m\} \).
- The *column space* of a matrix: \(\text{Col } A = \text{Span}\{\text{columns of } A\} \).
- The range of a linear transformation (same as above).
- The *null space* of a matrix: \(\text{Nul } A = \{ x \mid Ax = 0 \} \).
- The *row space* of a matrix: \(\text{Row } A = \text{Span}\{\text{rows of } A\} \).
- The \(\lambda \)-eigenspace of a matrix, where \(\lambda \) is an eigenvalue.
- The orthogonal complement \(W^\perp \) of a subspace \(W \).
- The zero subspace \(\{0\} \).
- All of \(\mathbb{R}^n \).
Subspaces and Bases

Definition
Let V be a subspace of \mathbb{R}^n. A basis of V is a set of vectors $\{v_1, v_2, \ldots, v_m\}$ in \mathbb{R}^n such that:

1. $V = \text{Span}\{v_1, v_2, \ldots, v_m\}$, and
2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

The number of vectors in a basis is the dimension of V, and is written $\dim V$.

Every subspace has a basis, so every subspace is a span. But subspaces have many different bases, and some might be better than others. For instance, Gram–Schmidt takes a basis and produces an orthogonal basis. Or, diagonalization produces a basis of eigenvectors of a matrix.

How do I know if a subset V is a subspace or not?
- Can you write V as one of the examples on the previous slide?
- If not, does it satisfy the three defining properties?

Note on subspaces versus subsets: A subset of \mathbb{R}^n is any collection of vectors whatsoever. Like, the unit circle in \mathbb{R}^2, or all vectors with whole-number coefficients. A subspace is a subset that satisfies three additional properties. Most subsets are not subspaces.
Definition
Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix P such that

$$A = PBP^{-1}.$$

Important Facts:
1. Similar matrices have the same characteristic polynomial.
2. It follows that similar matrices have the same eigenvalues.
3. If A is similar to B and B is similar to C, then A is similar to C.

Caveats:
1. Matrices with the same characteristic polynomial need not be similar.
2. Similarity has nothing to do with row equivalence.
3. Similar matrices usually do not have the same eigenvectors.
Similarity
Geometric meaning

Let $A = PBP^{-1}$, and let v_1, v_2, \ldots, v_n be the columns of P. These form a basis \mathcal{B} for \mathbb{R}^n because P is invertible. Key relation: for any vector x in \mathbb{R}^n,

$$[Ax]_{\mathcal{B}} = B[x]_{\mathcal{B}}.$$

This says:

A acts on the usual coordinates of x in the same way that B acts on the \mathcal{B}-coordinates of x.

Example:

$$A = \frac{1}{4} \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Then $A = PBP^{-1}$. B acts on the usual coordinates by scaling the first coordinate by 2, and the second by $1/2$:

$$B \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ x_2/2 \end{pmatrix}.$$

The unit coordinate vectors are eigenvectors: e_1 has eigenvalue 2, and e_2 has eigenvalue $1/2$.
In this case, $\mathcal{B} = \{ (\frac{1}{1}), (\frac{1}{-1}) \}$. Let $v_1 = (\frac{1}{1})$ and $v_2 = (\frac{1}{-1})$.

To compute $y = Ax$:

1. Find $[x]_{\mathcal{B}}$.
2. $[y]_{\mathcal{B}} = B[x]_{\mathcal{B}}$.
3. Compute y from $[y]_{\mathcal{B}}$.

Say $x = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

1. $x = v_1 + v_2$ so $[x]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
2. $[y]_{\mathcal{B}} = B \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
3. $y = 2v_1 + \frac{1}{2}v_2 = \begin{pmatrix} 5/2 \\ 3/2 \end{pmatrix}$.

A scales the v_1-coordinate by 2, and the v_2-coordinate by $\frac{1}{2}$.

Picture:
Definition
A matrix equation $Ax = b$ is **consistent** if it has a solution, and **inconsistent** otherwise.

If A has columns v_1, v_2, \ldots, v_n, then

$$b = Ax = \begin{pmatrix} v_1 & v_2 & \cdots & v_m \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$

So if $Ax = b$ has a solution, then b is a linear combination of v_1, v_2, \ldots, v_n, and conversely. Equivalently, b is in $\text{Span}\{v_1, v_2, \ldots, v_n\} = \text{Col} \ A$.

Important

$Ax = b$ is consistent if and only if b is in Col A.
Suppose that $Ax = b$ is inconsistent. Let $\hat{b} = \text{proj}_{\text{Col}(A)}(b)$ be the closest vector for which $A\hat{x} = \hat{b}$ does have a solution.

Definition

A solution to $A\hat{x} = \hat{b}$ is a **least squares solution** to $Ax = b$. This is the solution \hat{x} for which $A\hat{x}$ is closest to b (with respect to the usual notion of distance in \mathbb{R}^n).

Theorem

The least-squares solutions to $Ax = b$ are the solutions to

$$A^T A\hat{x} = A^T b.$$

If A has orthogonal columns u_1, u_2, \ldots, u_n, then the least-squares solution is

$$\hat{x} = \left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \frac{x \cdot u_2}{u_2 \cdot u_2}, \ldots, \frac{x \cdot u_m}{u_m \cdot u_m} \right)$$

because

$$A\hat{x} = \hat{b} = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m.$$