Midterm 3

Review Slides
Recall: A set of \(n \) vectors \(\{v_1, v_2, \ldots, v_n\} \) form a basis for \(\mathbb{R}^n \) if and only if the matrix \(C \) with columns \(v_1, v_2, \ldots, v_n \) is invertible.

Translation: Let \(B \) be the basis of columns of \(C \). Multiplying by \(C \) changes from the \(B \)-coordinates to the usual coordinates, and multiplying by \(C^{-1} \) changes from the usual coordinates to the \(B \)-coordinates:

\[
[x]_B = C^{-1}x \quad x = C[x]_B.
\]
Similarity

Definition
Two \(n \times n \) matrices \(A \) and \(B \) are **similar** if there is an invertible \(n \times n \) matrix \(C \) such that

\[
A = CBC^{-1}.
\]

What does this mean? This gives you a different way of thinking about multiplication by \(A \). Let \(B \) be the basis of columns of \(C \).

To compute \(Ax \), you:
1. multiply \(x \) by \(C^{-1} \) to change to the \(B \)-coordinates: \([x]_B = C^{-1}x \)
2. multiply this by \(B \): \(B[x]_B = BC^{-1}x \)
3. multiply this by \(C \) to change to usual coordinates: \(Ax = CBC^{-1}x = CB[x]_B \).
Similarity

Definition
Two $n \times n$ matrices A and B are **similar** if there is an invertible $n \times n$ matrix C such that

$$A = CBC^{-1}.$$

What does this mean? This gives you a different way of thinking about multiplication by A. Let B be the basis of columns of C.

If $A = CBC^{-1}$, then A and B do the same thing, but B operates on the B-coordinates, where B is the basis of columns of C.
$A = \begin{pmatrix} \frac{1}{2} & \frac{3}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix}$ \quad B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$ \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ \quad A = CBC^{-1}$.

What does B do geometrically?

It scales the x-direction by 2 and the y-direction by -1.

To compute Ax, first change to the B coordinates, then multiply by B, then change back to the usual coordinates, where

$$B = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} = \{ v_1, v_2 \}$$ (the columns of C).
A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad A = CBC^{-1}.

What does \(B\) do geometrically?

It scales the \(x\)-direction by 2 and the \(y\)-direction by \(-1\).

To compute \(Ax\), first change to the \(B\) coordinates, then multiply by \(B\), then change back to the usual coordinates, where

\[B = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} = \{v_1, v_2\} \quad \text{(the columns of } C). \]
\(A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad A = CBC^{-1}. \)

What does \(B \) do geometrically?

It scales the \(x \)-direction by 2 and the \(y \)-direction by \(-1\).

To compute \(Ax \), first change to the \(B \) coordinates, then multiply by \(B \), then change back to the usual coordinates, where

\[B = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} = \{ v_1, v_2 \} \quad \text{(the columns of } C). \]
$A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad A = CBC^{-1}$.

What does B do geometrically?

It scales the x-direction by 2 and the y-direction by -1.

To compute Ax, first change to the B coordinates, then multiply by B, then change back to the usual coordinates, where

$$B = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} = \{v_1, v_2\} \quad \text{(the columns of C).}$$
What does A do geometrically?

- B scales the e_1-direction by 2 and the e_2-direction by -1.
- A scales the v_1-direction by 2 and the v_2-direction by -1.

Since B is simpler than A, this makes it easier to understand A.

Note the relationship between the eigenvalues/eigenvectors of A and B.

[interactive]
Similarity
Example (3 × 3)

\[
A = \begin{pmatrix}
-3 & -5 & -3 \\
2 & 4 & 3 \\
-3 & -5 & -2
\end{pmatrix} \quad B = \begin{pmatrix}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix} \quad C = \begin{pmatrix}
-1 & 1 & 0 \\
1 & -1 & 1 \\
-1 & 0 & 1
\end{pmatrix}
\]

\[\Rightarrow \quad A = CBC^{-1}.\]

What do \(A\) and \(B\) do geometrically?

- \(B\) scales the \(e_1\)-direction by 2, the \(e_2\)-direction by \(-1\), and fixes \(e_3\).
- \(A\) scales the \(v_1\)-direction by 2, the \(v_2\)-direction by \(-1\), and fixes \(v_3\).

Here \(v_1, v_2, v_3\) are the columns of \(C\).
Diagonalizable Matrices

Definition
An \(n \times n \) matrix \(A \) is **diagonalizable** if it is similar to a diagonal matrix:

\[
A = PDP^{-1} \quad \text{for } D \text{ diagonal.}
\]

The Diagonalization Theorem
An \(n \times n \) matrix \(A \) is diagonalizable if and only if \(A \) has \(n \) linearly independent eigenvectors.

In this case, \(A = PDP^{-1} \) for

\[
\begin{align*}
P &= \begin{pmatrix} \mid & \mid & \cdots & \mid \\
v_1 & v_2 & \cdots & v_n \\
\mid & \mid & \cdots & \mid
\end{pmatrix} \\
D &= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix},
\end{align*}
\]

where \(v_1, v_2, \ldots, v_n \) are linearly independent eigenvectors, and \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are the corresponding eigenvalues (in the same order).

Corollary
An \(n \times n \) matrix with \(n \) distinct eigenvalues is diagonalizable.
Definition
Let \(\lambda \) be an eigenvalue of a square matrix \(A \). The **geometric multiplicity** of \(\lambda \) is the dimension of the \(\lambda \)-eigenspace.

Theorem
Let \(\lambda \) be an eigenvalue of a square matrix \(A \). Then
\[
1 \leq \text{(the geometric multiplicity of } \lambda) \leq \text{(the algebraic multiplicity of } \lambda).
\]

Corollary
Let \(\lambda \) be an eigenvalue of a square matrix \(A \). If the algebraic multiplicity of \(\lambda \) is 1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form)
Let \(A \) be an \(n \times n \) matrix. The following are equivalent:
1. \(A \) is diagonalizable.
2. The sum of the geometric multiplicities of the eigenvalues of \(A \) equals \(n \).
3. The sum of the algebraic multiplicities of the eigenvalues of \(A \) equals \(n \), and *the geometric multiplicity equals the algebraic multiplicity* of each eigenvalue.
Algebraic and Geometric Multiplicity

Example

\[
A = \begin{pmatrix}
 7/2 & 0 & 3 \\
-3/2 & 2 & -3 \\
-3/2 & 0 & -1 \\
\end{pmatrix}
\]

Characteristic polynomial:

\[
f(\lambda) = - (\lambda - 2)^2 (\lambda - 1/2)
\]

Algebraic multiplicity of 2: 2
Algebraic multiplicity of 1/2: 1.

Know already:

- The 1/2-eigenspace is a line.
- The 2-eigenspace is a line or a plane.
- The matrix is diagonalizable if and only if the 2-eigenspace is a plane.
Algebraic and Geometric Multiplicity

Example

\[
A - 2I = \begin{pmatrix} 3/2 & 0 & 3 \\ -3/2 & 0 & -3 \\ -3/2 & 0 & -3 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

So a basis for the 2-eigenspace is

\[
\left\{ \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}
\]

This is a \textit{plane}, so the geometric multiplicity is 2.

\[
A - \frac{1}{2}I = \begin{pmatrix} 3 & 0 & 3 \\ -3/2 & 3/2 & -3 \\ -3/2 & 0 & -3/2 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}
\]

The \(1/2\)-eigenspace is the \textit{line}

\[
\text{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}
\]
Diagonalization

Example

The 2-eigenspace has basis \(\left\{ \begin{pmatrix} -2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \).

The 1/2-eigenspace has basis \(\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\} \).

Therefore, \(A = PDP^{-1} \) for

\[
P = \begin{pmatrix} -2 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1/2 \end{pmatrix}.
\]

Question: what does \(A \) do geometrically?
Diagonalization
Another example

\[
A = \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{pmatrix}.
\]

The characteristic polynomial is \((x - 1)^2(x - 2)\).

Algebraic multiplicity of 1: 2
Algebraic multiplicity of 2: 1.

Know already:
- The 2-eigenspace is a line.
- The 1-eigenspace is a line or a plane.
- The matrix is diagonalizable if and only if the 1-eigenspace is a plane.

Check: a basis for the 1-eigenspace is \(\{e_1\}\).

Conclusion: \(A\) is not diagonalizable!