Announcements
Wednesday, November 15

▶ The third midterm is on **this Friday, November 17**.
 ▶ The exam covers §§3.1, 3.2, 5.1, 5.2, 5.3, and 5.5.
 ▶ About half the problems will be conceptual, and the other half computational.

▶ There is a practice midterm posted on the website. It is identical in format to the real midterm (although there may be ±1–2 problems).

▶ Study tips:
 ▶ There are lots of problems at the end of each section in the book, and at the end of the chapter, for practice.
 ▶ Make sure to **learn the theorems** and **learn the definitions**, and understand what they mean. There is a reference sheet on the website.
 ▶ Sit down to do the practice midterm in 50 minutes, with no notes.
 ▶ Come to office hours!

▶ WeBWorK 5.3, 5.5 are due Wednesday at 11:59pm.

▶ **Double Rabinoffice hours this week**: Monday, 1–3pm; Tuesday, 9–11am; Thursday, 9–11am; Thursday, 12–2pm.

▶ My review session **tomorrow**, 7–8pm, Howie L4. TA review session **tonight**, 4–6pm, in the Culc.
Chapter 6

Orthogonality and Least Squares
Section 6.1

Inner Product, Length, and Orthogonality
Recall: This course is about learning to:

- Solve the matrix equation $Ax = b$
- Solve the matrix equation $Ax = \lambda x$
- Almost solve the equation $Ax = b$

We are now aiming at the last topic.

Idea: In the real world, data is imperfect. Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v.

Due to measurement error, though, the measured x is not actually in $\text{Span}\{u, v\}$. In other words, the equation $au + bv = x$ has no solution. What do you do? The real value is probably the closest point to x on $\text{Span}\{u, v\}$. Which point is that?
The Dot Product

We need a notion of \textit{angle} between two vectors, and in particular, a notion of \textit{orthogonality} (i.e. when two vectors are perpendicular). This is the purpose of the dot product.

\textbf{Definition}

The \textbf{dot product} of two vectors x, y in \mathbb{R}^n is

\[x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \overset{\text{def}}{=} x_1 y_1 + x_2 y_2 + \cdots + x_n y_n. \]

Thinking of x, y as column vectors, this is the same as $x^T y$.

\textbf{Example}

\[
\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = (1 \ 2 \ 3) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32.
\]
Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that the result is a scalar.

- $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$
- $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$
- $(c\mathbf{x}) \cdot \mathbf{y} = c(\mathbf{x} \cdot \mathbf{y})$

Dotting a vector with itself is special:

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
\cdot
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
= x_1^2 + x_2^2 + \cdots + x_n^2.
\]

Hence:

- $\mathbf{x} \cdot \mathbf{x} \geq 0$
- $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = 0$.

Important: $\mathbf{x} \cdot \mathbf{y} = 0$ does *not* imply $\mathbf{x} = 0$ or $\mathbf{y} = 0$. For example, \((\begin{pmatrix} 1 \\ 0 \end{pmatrix}) \cdot (\begin{pmatrix} 0 \\ 1 \end{pmatrix}) = 0\).
The Dot Product and Length

Definition
The length or norm of a vector \(x \) in \(\mathbb{R}^n \) is

\[
\| x \| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}.
\]

Why is this a good definition? The Pythagorean theorem!

![Diagram showing the Pythagorean theorem]

\[
\left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| = \sqrt{3^2 + 4^2} = 5
\]

Fact
If \(x \) is a vector and \(c \) is a scalar, then \(\| c x \| = |c| \cdot \| x \| \).

\[
\left\| \begin{pmatrix} 6 \\ 8 \end{pmatrix} \right\| = 2 \left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| = 2 \left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| = 10
\]
The Dot Product and Distance

Definition
The **distance** between two points x, y in \mathbb{R}^n is

$$\text{dist}(x, y) = \| y - x \|.$$

This is just the length of the vector from x to y.

Example
Let $x = (1, 2)$ and $y = (4, 4)$. Then

$$\text{dist}(x, y) = \| y - x \| = \left\| \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\| = \sqrt{3^2 + 2^2} = \sqrt{13}.$$
Unit Vectors

Definition
A **unit vector** is a vector \(v \) with length \(\|v\| = 1 \).

Example
The unit coordinate vectors are unit vectors:

\[
\|e_1\| = \left\| \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\| = \sqrt{1^2 + 0^2 + 0^2} = 1
\]

Definition
Let \(x \) be a nonzero vector in \(\mathbb{R}^n \). The **unit vector in the direction of** \(x \) is the vector \(\frac{x}{\|x\|} \).

This is in fact a unit vector:

\[
\left\| \frac{x}{\|x\|} \right\| = \frac{1}{\|x\|} \|x\| = 1.
\]
What is the unit vector in the direction of \(\mathbf{x} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \)?

\[
\mathbf{u} = \frac{\mathbf{x}}{\|\mathbf{x}\|} = \frac{1}{\sqrt{3^2 + 4^2}} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 \\ 4 \end{pmatrix}.
\]
Orthogonality

Definition

Two vectors \(x, y \) are **orthogonal** or **perpendicular** if \(x \cdot y = 0 \).

Notation: \(x \perp y \) means \(x \cdot y = 0 \).

Why is this a good definition? The Pythagorean theorem / law of cosines!

\[
\|x - y\|^2 = \|x\|^2 + \|y\|^2 - 2\|x\|\|y\|\cos \alpha
\]

\(\alpha = 90^\circ \iff \cos \alpha = 0 \)

\(x \) and \(y \) are perpendicular
\(\iff \|x\|^2 + \|y\|^2 = \|x - y\|^2 \)
\(\iff x \cdot x + y \cdot y = (x - y) \cdot (x - y) \)
\(\iff x \cdot x + y \cdot y = x \cdot x + y \cdot y - 2x \cdot y \)
\(\iff x \cdot y = 0 \)

Fact: \(x \perp y \iff \|x - y\|^2 = \|x\|^2 + \|y\|^2 \)
Problem: Find all vectors orthogonal to \(\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \).

We have to find all vectors \(\mathbf{x} \) such that \(\mathbf{x} \cdot \mathbf{v} = 0 \). This means solving the equation

\[
0 = \mathbf{x} \cdot \mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3.
\]

The parametric form for the solution is \(x_1 = -x_2 + x_3 \), so the parametric vector form of the general solution is

\[
\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.
\]

For instance, \(\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \perp \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \) because \(\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 0 \).
Orthogonality

Example

Problem: Find *all* vectors orthogonal to both \(v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \) and \(w = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

Now we have to solve the system of two homogeneous equations:

\[
0 = x \cdot v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3
\]

\[
0 = x \cdot w = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = x_1 + x_2 + x_3.
\]

In matrix form:

The rows are \(v \) and \(w \)

\[
\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

The parametric vector form of the solution is

\[
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.
\]
Orthogonality

General procedure

Problem: Find all vectors orthogonal to some number of vectors \(v_1, v_2, \ldots, v_m\) in \(\mathbb{R}^n\).

This is the same as finding all vectors \(x\) such that

\[
0 = v_1^T x = v_2^T x = \cdots = v_m^T x.
\]

Putting the row vectors \(v_1^T, v_2^T, \ldots, v_m^T\) into a matrix, this is the same as finding all \(x\) such that

\[
\begin{pmatrix}
-v_1^T \\
v_2^T \\
\vdots \\
v_m^T
\end{pmatrix}
\begin{pmatrix}
x
\end{pmatrix}
=
\begin{pmatrix}
v_1 \cdot x \\
v_2 \cdot x \\
\vdots \\
v_m \cdot x
\end{pmatrix} = 0.
\]

Important

The set of all vectors orthogonal to some vectors \(v_1, v_2, \ldots, v_m\) in \(\mathbb{R}^n\) is the null space of the \(m \times n\) matrix you get by “turning them sideways and smooshing them together.”

In particular, this set is a subspace!
Orthogonal Complements

Definition
Let W be a subspace of \mathbb{R}^n. Its orthogonal complement is

$W^\perp = \{ v \in \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \in W \}$

read “W perp”.

Pictures:
The orthogonal complement of a line in \mathbb{R}^2 is the perpendicular line. [interactive]

The orthogonal complement of a line in \mathbb{R}^3 is the perpendicular plane. [interactive]

The orthogonal complement of a plane in \mathbb{R}^3 is the perpendicular line. [interactive]
Let W be a 2-plane in \mathbb{R}^4. How would you describe W^\perp?

A. The zero space $\{0\}$.
B. A line in \mathbb{R}^4.
C. A plane in \mathbb{R}^4.
D. A 3-dimensional space in \mathbb{R}^4.
E. All of \mathbb{R}^4.

For example, if W is the xy-plane, then W^\perp is the xy-plane:

\[
\begin{pmatrix} x \\ y \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ z \\ w \end{pmatrix} = 0.
\]
Let W be a subspace of \mathbb{R}^n.

Facts:
1. W^\perp is also a subspace of \mathbb{R}^n
2. $(W^\perp)^\perp = W$
3. $\dim W + \dim W^\perp = n$
4. If $W = \text{Span}\{v_1, v_2, \ldots, v_m\}$, then

$$W^\perp = \text{all vectors orthogonal to each } v_1, v_2, \ldots, v_m = \{x \in \mathbb{R}^n \mid x \cdot v_i = 0 \text{ for all } i = 1, 2, \ldots, m\}$$

$$= \text{Nul} \begin{pmatrix} -v_1^T & -v_2^T & \cdots & -v_m^T \end{pmatrix}.$$

Let’s check 1.

- Is 0 in W^\perp? Yes: $0 \cdot w = 0$ for any w in W.
- Suppose x, y are in W^\perp. So $x \cdot w = 0$ and $y \cdot w = 0$ for all w in W. Then $(x + y) \cdot w = x \cdot w + y \cdot w = 0 + 0 = 0$ for all w in W. So $x + y$ is also in W^\perp.
- Suppose x is in W^\perp. So $x \cdot w = 0$ for all w in W. If c is a scalar, then $(cx) \cdot w = c(x \cdot 0) = c(0) = 0$ for any w in W. So cx is in W^\perp.

Problem: if \(W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \), compute \(W^\perp \).

By property 4, we have to find the null space of the matrix whose rows are \(\begin{pmatrix} 1 & 1 & -1 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \), which we did before:

\[
\text{Nul} \left(\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \right) = \text{Span} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}.
\]

\[\text{Span}\{v_1, v_2, \ldots, v_m\}^\perp = \text{Nul} \begin{pmatrix} \vdots \\ v_1^T \\ \vdots \\ v_m^T \end{pmatrix} \]
Definition
The row space of an $m \times n$ matrix A is the span of the rows of A. It is denoted $\text{Row } A$. Equivalently, it is the column span of A^T:

$$\text{Row } A = \text{Col } A^T.$$

It is a subspace of \mathbb{R}^n.

We showed before that if A has rows $v_1^T, v_2^T, \ldots, v_m^T$, then

$$\text{Span}\{v_1, v_2, \ldots, v_m\}^\perp = \text{Nul } A.$$

Hence we have shown:

Fact: $(\text{Row } A)^\perp = \text{Nul } A$.

Replacing A by A^T, and remembering $\text{Row } A^T = \text{Col } A$:

Fact: $(\text{Col } A)^\perp = \text{Nul } A^T$.

Using property 2 and taking the orthogonal complements of both sides, we get:

Fact: $(\text{Nul } A)^\perp = \text{Row } A$ and $\text{Col } A = (\text{Nul } A^T)^\perp$.

Orthogonal Complements of Most of the Subspaces We’ve Seen

For any vectors v_1, v_2, \ldots, v_m:

$$\text{Span}\{v_1, v_2, \ldots, v_m\}^\perp = \text{Nul} \begin{pmatrix}
\vdots \\
v_1^T \\
v_2^T \\
\vdots \\
v_m^T
\end{pmatrix}$$

For any matrix A:

$$\text{Row } A = \text{Col } A^T$$

and

$$(\text{Row } A)^\perp = \text{Nul } A \quad \text{Row } A = (\text{Nul } A)^\perp$$

$$(\text{Col } A)^\perp = \text{Nul } A^T \quad \text{Col } A = (\text{Nul } A^T)^\perp$$