The third midterm is on **this Friday, November 17**.
- The exam covers $\S\S$ 3.1, 3.2, 5.1, 5.2, 5.3, and 5.5.
- About half the problems will be conceptual, and the other half computational.

There is a practice midterm posted on the website. It is identical in format to the real midterm (although there may be ± 1–2 problems).

Study tips:
- There are lots of problems at the end of each section in the book, and at the end of the chapter, for practice.
- Make sure to learn the theorems and learn the definitions, and understand what they mean. There is a reference sheet on the website.
- Sit down to do the practice midterm in 50 minutes, with no notes.
- Come to office hours!

WeBWorK 5.3, 5.5 are due Wednesday at 11:59pm.

Double Rabin office hours this week: Monday, 1–3pm; Tuesday, 9–11am; Thursday, 9–11am; Thursday, 12–2pm.

My review session **tomorrow**, 7–8pm, Howie L4. TA review session **tonight**, 4–6pm, in the Culc.
Chapter 6

Orthogonality and Least Squares
Section 6.1

Inner Product, Length, and Orthogonality
Recall: This course is about learning to:

- Solve the matrix equation $Ax = b$
- Solve the matrix equation $Ax = \lambda x$
- Almost solve the equation $Ax = b$

We are now aiming at the last topic.

Idea: In the real world, data is imperfect. Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v.

Due to measurement error, though, the measured x is not actually in $\text{Span}\{u, v\}$. In other words, the equation $au + bv = x$ has no solution. What do you do? The real value is probably the closest point to x on $\text{Span}\{u, v\}$. Which point is that?
The Dot Product

We need a notion of angle between two vectors, and in particular, a notion of orthogonality (i.e. when two vectors are perpendicular). This is the purpose of the dot product.

Definition

The **dot product** of two vectors \(x, y \) in \(\mathbb{R}^n \) is

\[
 x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \overset{\text{def}}{=} x_1 y_1 + x_2 y_2 + \cdots + x_n y_n.
\]

Thinking of \(x, y \) as column vectors, this is the same as \(x^T y \).

Example

\[
 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = (1 \ 2 \ 3) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} =
\]
Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that the result is a scalar.

- \(x \cdot y = y \cdot x \)
- \((x + y) \cdot z = x \cdot z + y \cdot z \)
- \((cx) \cdot y = c(x \cdot y) \)

Dotting a vector with itself is special:

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
\cdot
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
= x_1^2 + x_2^2 + \cdots + x_n^2.
\]

Hence:

- \(x \cdot x \geq 0 \)
- \(x \cdot x = 0 \) if and only if \(x = 0 \).

Important: \(x \cdot y = 0 \) does not imply \(x = 0 \) or \(y = 0 \). For example, \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0 \).
The Dot Product and Length

Definition
The length or norm of a vector x in \mathbb{R}^n is

$$\|x\| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}.$$

Why is this a good definition? The Pythagorean theorem!

![Geometric diagram showing the length of vector (3, 4) is 5.](image)

$$\|\begin{pmatrix} 3 \\ 4 \end{pmatrix}\| = \sqrt{3^2 + 4^2} = 5$$

Fact
If x is a vector and c is a scalar, then $\|cx\| = |c| \cdot \|x\|$.

$$\left\| \begin{pmatrix} 6 \\ 8 \end{pmatrix} \right\| = \left\| 2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| =$$
The Dot Product and Distance

Definition
The **distance** between two points \(x, y \) in \(\mathbb{R}^n \) is

\[
dist(x, y) = \|y - x\|.
\]

This is just the length of the vector from \(x \) to \(y \).

Example
Let \(x = (1, 2) \) and \(y = (4, 4) \). Then

\[
dist(x, y) =
\]
Definition
A **unit vector** is a vector v with length $\|v\| = 1$.

Example
The unit coordinate vectors are unit vectors:

$$\|e_1\| = \left\| \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\| = \sqrt{1^2 + 0^2 + 0^2} = 1$$

Definition
Let x be a nonzero vector in \mathbb{R}^n. The **unit vector in the direction of** x is the vector $\frac{x}{\|x\|}$.

This is in fact a unit vector:

$$\left\| \frac{x}{\|x\|} \right\| = \frac{1}{\|x\|} \|x\| = 1.$$
Example

What is the unit vector in the direction of $\mathbf{x} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$?
Orthogonality

Definition
Two vectors x, y are **orthogonal** or **perpendicular** if $x \cdot y = 0$.

Notation: $x \perp y$ means $x \cdot y = 0$.

Why is this a good definition? The Pythagorean theorem / law of cosines!

![Diagram showing the law of cosines:](image)

Law of cosines:

$$\|x - y\|^2 = \|x\|^2 + \|y\|^2 - 2\|x\|\|y\|\cos \alpha$$

$$\alpha = 90^\circ \iff \cos \alpha = 0$$

Fact: $x \perp y \iff \|x - y\|^2 = \|x\|^2 + \|y\|^2$
Problem: Find all vectors orthogonal to \(\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \).
Orthogonality
Example

Problem: Find all vectors orthogonal to both \(v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \) and \(w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \).
Orthogonality

General procedure

Problem: Find all vectors orthogonal to some number of vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n.

This is the same as finding all vectors x such that

$$0 = v_1^T x = v_2^T x = \cdots = v_m^T x.$$

Putting the row vectors $v_1^T, v_2^T, \ldots, v_m^T$ into a matrix, this is the same as finding all x such that

$$
\begin{pmatrix}
- & v_1^T \\
- & v_2^T \\
\vdots & \vdots \\
- & v_m^T
\end{pmatrix} x =
\begin{pmatrix}
v_1 \cdot x \\
v_2 \cdot x \\
\vdots \\
v_m \cdot x
\end{pmatrix} = 0.
$$

Important

The set of all vectors orthogonal to some vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n is the null space of the $m \times n$ matrix you get by “turning them sideways and smooshing them together:”

$$
\begin{pmatrix}
- & v_1^T \\
- & v_2^T \\
\vdots & \vdots \\
- & v_m^T
\end{pmatrix}.
$$

In particular, this set is a subspace!
Orthogonal Complements

Definition
Let W be a subspace of \mathbb{R}^n. Its **orthogonal complement** is

$$W^\perp = \{ v \in \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \in W \}$$

read “W perp”.

W^\perp is orthogonal complement

A^T is transpose

Pictures:
The orthogonal complement of a **line** in \mathbb{R}^2 is the perpendicular **line**. [interactive]

The orthogonal complement of a **line** in \mathbb{R}^3 is the perpendicular **plane**. [interactive]

The orthogonal complement of a **plane** in \mathbb{R}^3 is the perpendicular **line**. [interactive]
Poll

Let W be a 2-plane in \mathbb{R}^4. How would you describe W^\perp?

A. The zero space $\{0\}$.
B. A line in \mathbb{R}^4.
C. A plane in \mathbb{R}^4.
D. A 3-dimensional space in \mathbb{R}^4.
E. All of \mathbb{R}^4.

For example, if W is the xy-plane, then W^\perp is the xy-plane:

$$
\begin{bmatrix}
 x \\
 y \\
 0 \\
 0
\end{bmatrix} \cdot
\begin{bmatrix}
 0 \\
 0 \\
 z \\
 w
\end{bmatrix} = 0.
$$
Let W be a subspace of \mathbb{R}^n.

Facts:
1. W^\perp is also a subspace of \mathbb{R}^n
2. $(W^\perp)^\perp = W$
3. $\dim W + \dim W^\perp = n$
4. If $W = \text{Span}\{v_1, v_2, \ldots, v_m\}$, then

\[W^\perp = \text{all vectors orthogonal to each } v_1, v_2, \ldots, v_m \]

\[= \{x \in \mathbb{R}^n \mid x \cdot v_i = 0 \text{ for all } i = 1, 2, \ldots, m\} \]

\[= \text{Nul} \begin{pmatrix} -v_1^T & -v_2^T & \cdots & -v_m^T \end{pmatrix}. \]
Problem: if $W = \text{Span}\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$, compute W^\perp.
Definition
The row space of an \(m \times n \) matrix \(A \) is the span of the rows of \(A \). It is denoted \(\text{Row } A \). Equivalently, it is the column span of \(A^T \):
\[
\text{Row } A = \text{Col } A^T.
\]
It is a subspace of \(\mathbb{R}^n \).

We showed before that if \(A \) has rows \(v_1^T, v_2^T, \ldots, v_m^T \), then
\[
\text{Span}\{v_1, v_2, \ldots, v_m\}^\perp = \text{Nul } A.
\]

Hence we have shown:
Fact: \((\text{Row } A)^\perp = \text{Nul } A \).

Replacing \(A \) by \(A^T \), and remembering \(\text{Row } A^T = \text{Col } A \):
Fact: \((\text{Col } A)^\perp = \text{Nul } A^T \).

Using property 2 and taking the orthogonal complements of both sides, we get:
Fact: \((\text{Nul } A)^\perp = \text{Row } A \) and \(\text{Col } A = (\text{Nul } A^T)^\perp \).
Orthogonal Complements of Most of the Subspaces We've Seen

For any vectors v_1, v_2, \ldots, v_m:

$$\text{Span}\{v_1, v_2, \ldots, v_m\}^\perp = \text{Nul} \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_m^T \end{pmatrix}$$

For any matrix A:

$$\text{Row } A = \text{Col } A^T$$

and

$$(\text{Row } A)^\perp = \text{Nul } A \quad \text{Row } A = (\text{Nul } A)^\perp$$

$$(\text{Col } A)^\perp = \text{Nul } A^T \quad \text{Col } A = (\text{Nul } A^T)^\perp$$