1. [5 points] Write a mathematically correct definition of an eigenvalue. Pay attention to your quantifiers.

 “λ is an eigenvalue of an \(n \times n \) matrix \(A \) provided that there exists a nonzero solution \(v \) to the equation \(Av = \lambda v \).”

2. [4 points] Consider the matrix \(A \) for the transformation that reflects over a line \(L \). Find all eigenvalues of \(A \), and draw a picture of an eigenvector for each eigenvalue in the box below.

 Solution.

 The only vectors that are taken to a scalar multiple are the vectors on \(L \), which are not moved, and the vectors perpendicular to \(L \), which are negated. The former have eigenvalue 1, and the latter have eigenvalue \(-1\).

3. [3 points] Find all eigenvalues of \(A \).

 \[
 A = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}
 \]

 Solution.

 The characteristic polynomial of \(A \) is

 \[
 f(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 - 3\lambda - 1.
 \]

 The roots are

 \[
 \lambda = \frac{3 \pm \sqrt{9 + 4}}{2} = \frac{3 \pm \sqrt{13}}{2}.
 \]

 These are the eigenvalues of \(A \).