1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates counterclockwise by 45°, and let $U : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that scales the x-direction by 2. The matrices A and B for T and U are, respectively:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

a) Compute the matrices for T^{-1} and U^{-1}.

b) Compute the matrix for the transformation that first rotates counterclockwise by 45°, then scales the x-direction by 2, then rotates clockwise by 45°.

Solution.

a) The matrices for T^{-1} and U^{-1} are A^{-1} and B^{-1}, respectively. We compute these using the determinant trick:

$$\det A = \frac{1}{2}(1 + 1) = 1 \quad A^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$\det B = 2 \quad B^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

b) The transformation in question is $T^{-1} \circ U \circ T$. The matrix for this transformation is

$$A^{-1}BA = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}.$$
2. Let \(A \) be an \(n \times n \) matrix which is **not invertible**, and let \(T(x) = Ax \). Which of the following are definitely true? (Circle all that apply.)

 a) \(T(x) = b \) is consistent for all \(b \) in \(\mathbb{R}^n \).

 b) \(Ax = 0 \) has the trivial solution.

 c) There exist \(x \neq y \) in \(\mathbb{R}^n \) such that \(T(x) = T(y) \).

 d) Every vector in \(\mathbb{R}^n \) is a linear combination of the columns of \(A \).

 e) \(A \) has at most \(n - 1 \) pivots.

Solution.

a) This means that \(T \) is onto, which implies \(A \) is invertible, so this is **false**.

b) This is always **true**, whether \(A \) is invertible or not.

c) This means that \(T \) is not one-to-one, which is **true** when \(A \) is not invertible.

d) This implies \(A \) is invertible, so it is **false**.

e) This means \(A \) does not have \(n \) pivots, which is **true** when \(A \) is not invertible.