Announcements
Wednesday, October 11

▶ The second midterm is on Friday, October 20.
 ▶ That is one week from this Friday.
 ▶ The exam covers §§1.7, 1.8, 1.9, 2.1, 2.2, 2.3, 2.8, and 2.9.

▶ Comments on mid-semester reviews on Piazza.

▶ WeBWorK 2.1, 2.2, 2.3 are due today at 11:59pm.

▶ The quiz on Friday covers §§2.1, 2.2, 2.3.

▶ My office is Skiles 244. Rabin office hours are today, 10–11, 12–1, and 2–3.
Section 2.8

Subspaces of \mathbb{R}^n
Today we will discuss **subspaces** of \mathbb{R}^n.

A subspace turns out to be the same as a span, except we don’t know *which* vectors it’s the span of.

This arises naturally when you have, say, a plane through the origin in \mathbb{R}^3 which is *not* defined (a priori) as a span, but you still want to say something about it.

\[x + 3y + z = 0 \]
Definition of Subspace

Definition
A subspace of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

1. The zero vector is in V. “not empty”
2. If u and v are in V, then $u + v$ is also in V. “closed under addition”
3. If u is in V and c is in \mathbb{R}, then cu is in V. “closed under \times scalars”

Fast-forward
Every subspace is a span, and every span is a subspace.

A subspace is a span of some vectors, but you haven’t computed what those vectors are yet.
Definition of Subspace

Definition

A **subspace** of \(\mathbb{R}^n \) is a subset \(V \) of \(\mathbb{R}^n \) satisfying:

1. The zero vector is in \(V \). “not empty”
2. If \(u \) and \(v \) are in \(V \), then \(u + v \) is also in \(V \). “closed under addition”
3. If \(u \) is in \(V \) and \(c \) is in \(\mathbb{R} \), then \(cu \) is in \(V \). “closed under \(\times \) scalars”

What does this mean?

- If \(v \) is in \(V \), then all scalar multiples of \(v \) are in \(V \) by (3). That is, the line through \(v \) is in \(V \).
- If \(u, v \) are in \(V \), then \(xu \) and \(yv \) are in \(V \) for scalars \(x, y \) by (3). So \(xu + yv \) is in \(V \) by (2). So Span\(\{u, v\} \) is contained in \(V \).
- Likewise, if \(v_1, v_2, \ldots, v_n \) are all in \(V \), then Span\(\{v_1, v_2, \ldots, v_n\} \) is contained in \(V \): a subspace contains the span of any set of vectors in it.

If you pick enough vectors in \(V \), eventually their span will fill up \(V \), so:

A subspace is a span of some set of vectors in it.
Examples

Example
A line \(L \) through the origin: this contains the span of any vector in \(L \).

Example
A plane \(P \) through the origin: this contains the span of any vectors in \(P \).

Example
All of \(\mathbb{R}^n \): this contains 0, and is closed under addition and scalar multiplication.

Example
The subset \(\{0\} \): this subspace contains only one vector.

Note these are all pictures of spans! (Line, plane, space, etc.)
A **subset** of \mathbb{R}^n is any collection of vectors whatsoever.

All of the following non-examples are still subsets.

A **subspace** is a special kind of subset, which satisfies the three defining properties.

![Subset: yes Subspace: no](image-url)
Non-Examples

Non-Example
A line L (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example
A circle C is not a subspace. Fails: 1, 2, 3. Think: a circle isn't a “linear space.”

Non-Example
The first quadrant in \mathbb{R}^2 is not a subspace. Fails: 3 only.

Non-Example
A line union a plane in \mathbb{R}^3 is not a subspace. Fails: 2 only.
Spans are Subspaces

Theorem
Any \(\text{Span}\{v_1, v_2, \ldots, v_n\} \) is a subspace.

!!!

Every subspace is a span, and every span is a subspace.

Definition
If \(V = \text{Span}\{v_1, v_2, \ldots, v_n\} \), we say that \(V \) is the subspace **generated by** or **spanned by** the vectors \(v_1, v_2, \ldots, v_n \).
Question: What is the difference between {} and {0}?
Let \(V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \mid ab = 0 \right\} \). Let’s check if \(V \) is a subspace or not.

1. Does \(V \) contain the zero vector?
 \(\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow ab = 0 \)

2. Is \(V \) closed under addition?
 Let \(\begin{pmatrix} a \\ b \end{pmatrix} \) and \(\begin{pmatrix} a' \\ b' \end{pmatrix} \) be (unknown vectors) in \(V \).
 \(ab = 0 \) and \(a'b' = 0 \).
 Is \(\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} a + a' \\ b + b' \end{pmatrix} \) in \(V \)?
 This means: \((a + a')(b + b') = 0 \).
 This is not true for all \(a, a', b, b' \): for instance, \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \) are in \(V \), but their sum \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) is not in \(V \), because \(1 \cdot 1 \neq 0 \).

We conclude that \(V \) is not a subspace. A picture is above. (It doesn’t look like a span.)
Column Space and Null Space

An $m \times n$ matrix A naturally gives rise to two subspaces.

Definition

- The **column space** of A is the subspace of \mathbb{R}^m spanned by the columns of A. It is written $\text{Col} \ A$.
- The **null space** of A is the set of all solutions of the homogeneous equation $Ax = 0$:
 \[
 \text{Nul} \ A = \{ x \in \mathbb{R}^n \mid Ax = 0 \}.
 \]
 This is a subspace of \mathbb{R}^n.

The column space is defined as a span, so we know it is a subspace. It is the range (as opposed to the codomain) of the transformation $T(x) = Ax$.

Check that the null space is a subspace:

1. 0 is in Nul A because $A \cdot 0 = 0$.
2. If u and v are in Nul A, then $Au = 0$ and $Av = 0$. Hence $A(u + v) = Au + Av = 0$, so $u + v$ is in Nul A.
3. If u is in Nul A, then $Au = 0$. For any scalar c, $A(cu) = cAu = 0$. So cu is in Nul A.
Column Space and Null Space

Example

Let \(A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}. \)

Let’s compute the column space:

\[\text{Col} \ A = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}. \]

This is a line in \(\mathbb{R}^3 \).

Let’s compute the null space:

The reduced row echelon form of \(A \) is
\[\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}. \]

This gives the equation \(x + y = 0 \), or \(x = -y \).

\(y \) parametric vector form \((x, y) = y (-1, 1) \).

Hence the null space is \(\text{Span} \left\{ (-1, 1) \right\} \), a line in \(\mathbb{R}^2 \).
The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to $Ax = 0$. It is a subspace, so it is a span.

Question

How to find vectors which span the null space?

Answer: Parametric vector form! We know that the solution set to $Ax = 0$ has a parametric form that looks like

$$x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \text{ if, say, } x_3 \text{ and } x_4 \text{ are the free variables. So }$$

$$\text{Nul } A = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\} .$$

Refer back to the slides for §1.5 (Solution Sets).

Note: It is much easier to define the null space first as a subspace, then find spanning vectors *later*, if we need them. This is one reason subspaces are so useful.
How do you check if a subset is a subspace?

- Is it a span? Can it be written as a span?
- Can it be written as the column space of a matrix?
- Can it be written as the null space of a matrix?
- Is it all of \(\mathbb{R}^n \) or the zero subspace \(\{0\} \)?
- Can it be written as a type of subspace that we’ll learn about later (eigenspaces, …)?

If so, then it’s automatically a subspace.

If all else fails:
- Can you verify directly that it satisfies the three defining properties?
What is the *smallest number* of vectors that are needed to span a subspace?

Definition
Let V be a subspace of \mathbb{R}^n. A *basis* of V is a set of vectors $\{v_1, v_2, \ldots, v_m\}$ in V such that:

1. $V = \text{Span}\{v_1, v_2, \ldots, v_m\}$, and
2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written $\text{dim } V$.

Why is a basis the smallest number of vectors needed to span?
Recall: *linearly independent* means that every time you add another vector, the span gets bigger.

Hence, if we remove any vector, the span gets *smaller*: so any smaller set can’t span V.

Important
A subspace has *many different* bases, but they all have the same number of vectors (see the exercises in §2.9).
Question
What is a basis for \mathbb{R}^2?

We need two vectors that span \mathbb{R}^2 and are linearly independent. \(\{e_1, e_2\} \) is one basis.

1. They span: \(\begin{pmatrix} a \\ b \end{pmatrix} = ae_1 + be_2 \).
2. They are linearly independent because they are not collinear.

Question
What is another basis for \mathbb{R}^2?

Any two nonzero vectors that are not collinear. \(\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\} \) is also a basis.

1. They span: \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) has a pivot in every row.
2. They are linearly independent: \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) has a pivot in every column.
Bases of \mathbb{R}^n

The unit coordinate vectors

\[
\begin{align*}
e_1 &= \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, &
\quad & e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, &
\quad & \ldots, &
\quad & e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, &
\quad & e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}
\end{align*}
\]

are a basis for \mathbb{R}^n.

The identity matrix has columns e_1, e_2, \ldots, e_n.

1. They span: I_n has a pivot in every row.
2. They are linearly independent: I_n has a pivot in every column.

In general: $\{v_1, v_2, \ldots, v_n\}$ is a basis for \mathbb{R}^n if and only if the matrix

\[
A = \begin{pmatrix}
v_1 & v_2 & \cdots & v_n
\end{pmatrix}
\]

has a pivot in every row and every column, i.e. if A is invertible.

Sanity check: we have shown that $\dim \mathbb{R}^n = n$.
Example

Let

\[V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + 3y + z = 0 \right\} \quad \mathcal{B} = \left\{ \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \right\}. \]

Verify that \(\mathcal{B} \) is a basis for \(V \). (So dim \(V = 2 \): it is a plane.)
The vectors in the parametric vector form of the general solution to $Ax = 0$ always form a basis for $\text{Nul } A$.

Example

\[
A = \begin{pmatrix}
1 & 2 & 0 & -1 \\
-2 & -3 & 4 & 5 \\
2 & 4 & 0 & -2
\end{pmatrix}
\xrightarrow{\text{rref}}
\begin{pmatrix}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

\[\text{parametric vector form} \Rightarrow \quad x = x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix}
\]

1. The vectors span $\text{Nul } A$ by construction (every solution to $Ax = 0$ has this form).
2. Can you see why they are linearly independent? (Look at the last two rows.)
Basis for Col A

Fact

The *pivot columns* of A always form a basis for $\text{Col} \ A$.

Warning: I mean the pivot columns of the *original* matrix A, not the row-reduced form. (Row reduction changes the column space.)

Example

$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & 3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix}$

Row reduction:

$rref \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

pivot columns = basis ↔ pivot columns in rref

So a basis for $\text{Col} \ A$ is

$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \right\}.$$

Why? See slides on linear independence.
Summary

- A **subspace** is the same as a span of some number of vectors, but we haven’t computed the vectors yet.
- To any matrix is associated two subspaces, the **column space** and the **null space**:

 \[\text{Col } A = \text{ the span of the columns of } A \]
 \[\text{Nul } A = \text{ the solution set of } Ax = 0. \]

- A **basis** of a subspace is a minimal set of spanning vectors; the **dimension** of \(V \) is the number of vectors in any basis.
- The pivot columns form a basis for \(\text{Col } A \), and the parametric vector form produces a basis for \(\text{Nul } A \).

Warning
These are not the official definitions!