WeBWorK due on Wednesday at 11:59pm.

The quiz on Friday covers through §1.2 (last week’s material).

My office is Skiles 244 and my office hours are Monday, 1–3pm and Tuesday, 9–11am.

Your TAs have office hours too. You can go to any of them. Details on the website.
Section 1.3

Vector Equations
We want to think about the *algebra* in linear algebra (systems of equations and their solution sets) in terms of *geometry* (points, lines, planes, etc).

\[x - 3y = -3 \]
\[2x + y = 8 \]

This will give us better insight into the properties of systems of equations and their solution sets.
We have been drawing elements of \mathbb{R}^n as points in the line, plane, space, etc. We can also draw them as arrows.

Definition

A **point** is an element of \mathbb{R}^n, drawn as a point (a dot).

A **vector** is an element of \mathbb{R}^n, drawn as an arrow. When we think of an element of \mathbb{R}^n as a vector, we'll usually write it vertically, like a matrix with one column:

$$v = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

[interactive]

The difference is purely psychological: *points and vectors are just lists of numbers.*
Points and Vectors

So why make the distinction?

A vector need not start at the origin: *it can be located anywhere*! In other words, an arrow is determined by its length and its direction, not by its location.

![Diagram of arrows representing vectors](image)

These arrows all represent the vector \(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \).

However, unless otherwise specified, we’ll assume a vector starts at the origin.

This makes sense in the real world: many physical quantities, such as velocity, are represented as vectors. But it makes more sense to think of the velocity of a car as being located at the car.

Another way to think about it: a vector is a *difference* between two points, or the arrow from one point to another.

For instance, \(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \) is the arrow from \((1, 1)\) to \((2, 3)\).
Vector Algebra

Definition

• We can add two vectors together:

\[
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} + \begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
a + x \\
b + y \\
c + z
\end{pmatrix}.
\]

• We can multiply, or scale, a vector by a real number \(c \):

\[
c \begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
c \cdot x \\
c \cdot y \\
c \cdot z
\end{pmatrix}.
\]

We call \(c \) a scalar to distinguish it from a vector. If \(v \) is a vector and \(c \) is a scalar, \(cv \) is called a scalar multiple of \(v \).

(And likewise for vectors of length \(n \).) For instance,
The parallelogram law for vector addition

Geometrically, the sum of two vectors \(\mathbf{v}, \mathbf{w} \) is obtained as follows: place the tail of \(\mathbf{w} \) at the head of \(\mathbf{v} \). Then \(\mathbf{v} + \mathbf{w} \) is the vector whose tail is the tail of \(\mathbf{v} \) and whose head is the head of \(\mathbf{w} \). Doing this both ways creates a parallelogram. For example,

\[
\begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}.
\]

Why? The width of \(\mathbf{v} + \mathbf{w} \) is the sum of the widths, and likewise with the heights. [interactive]

Vector subtraction

Geometrically, the difference of two vectors \(\mathbf{v}, \mathbf{w} \) is obtained as follows: place the tail of \(\mathbf{v} \) and \(\mathbf{w} \) at the same point. Then \(\mathbf{v} - \mathbf{w} \) is the vector from the head of \(\mathbf{v} \) to the head of \(\mathbf{w} \). For example,

\[
\begin{pmatrix} 1 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}.
\]

Why? If you add \(\mathbf{v} - \mathbf{w} \) to \(\mathbf{w} \), you get \(\mathbf{v} \). [interactive]

This works in higher dimensions too!
Scalar Multiplication: Geometry

Scalar multiples of a vector
These have the same *direction* but a different *length*.

Some multiples of \mathbf{v}.

\[
\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}
\]

\[
2\mathbf{v} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}
\]

\[
-\frac{1}{2}\mathbf{v} = \begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix}
\]

\[
0\mathbf{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

All multiples of \mathbf{v}.

So the scalar multiples of \mathbf{v} form a *line*.
We can add and scalar multiply in the same equation:

\[w = c_1 v_1 + c_2 v_2 + \cdots + c_p v_p \]

where \(c_1, c_2, \ldots, c_p \) are scalars, \(v_1, v_2, \ldots, v_p \) are vectors in \(\mathbb{R}^n \), and \(w \) is a vector in \(\mathbb{R}^n \).

Definition
We call \(w \) a **linear combination** of the vectors \(v_1, v_2, \ldots, v_p \). The scalars \(c_1, c_2, \ldots, c_p \) are called the **weights** or **coefficients**.

Example

Let \(v = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \) and \(w = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \).

What are some linear combinations of \(v \) and \(w \)?

- \(v + w \)
- \(v - w \)
- \(2v + 0w \)
- \(2w \)
- \(-v \)

[interactive: 2 vectors] [interactive: 3 vectors]
Is there any vector in \mathbb{R}^2 that is not a linear combination of v and w?

No: in fact, every vector in \mathbb{R}^2 is a combination of v and w.

(The purple lines are to help measure how much of v and w you need to get to a given point.)
What are some linear combinations of $v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$?

Question
What are all linear combinations of

\[v = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \quad \text{and} \quad w = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \, ? \]

Answer: The line which contains both vectors.

What’s different about this example and the one on the poll? [interactive]
Systems of Linear Equations

Question

Is \(\begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix} \) a linear combination of \(\begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} \) and \(\begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} \)?
Systems of Linear Equations

Continued

\[
\begin{align*}
 x - y &= 8 \\
 2x - 2y &= 16 \\
 6x - y &= 3
\end{align*}
\]

\[
\begin{pmatrix}
 1 & -1 & 8 \\
 2 & -2 & 16 \\
 6 & -1 & 3
\end{pmatrix}
\]

Row reduce

\[
\begin{pmatrix}
 1 & 0 & -1 \\
 0 & 1 & -9 \\
 0 & 0 & 0
\end{pmatrix}
\]

Solution

\[
\begin{align*}
 x &= -1 \\
 y &= -9
\end{align*}
\]

Conclusion:

\[
- \begin{pmatrix}
 1 \\
 2 \\
 6
\end{pmatrix} - 9 \begin{pmatrix}
 -1 \\
 -2 \\
 -1
\end{pmatrix} = \begin{pmatrix}
 8 \\
 16 \\
 3
\end{pmatrix}
\]

What is the relationship between the original vectors and the matrix form of the linear equation? They have the same columns!

Shortcut: You can make the augmented matrix without writing down the system of linear equations first.
The vector equation
\[x_1 v_1 + x_2 v_2 + \cdots + x_p v_p = b, \]
where \(v_1, v_2, \ldots, v_p, b \) are vectors in \(\mathbb{R}^n \) and \(x_1, x_2, \ldots, x_p \) are scalars, has the same solution set as the linear system with augmented matrix
\[
\begin{pmatrix}
| & | & | & |
n_1 & n_2 & \cdots & n_p & b \\
| & | & | & |
\end{pmatrix},
\]
where the \(n_i \)'s and \(b \) are the columns of the matrix.

So we now have (at least) two equivalent ways of thinking about linear systems of equations:

1. Augmented matrices.
2. Linear combinations of vectors (vector equations).

The last one is more geometric in nature.
It is important to know what are all linear combinations of a set of vectors v_1, v_2, \ldots, v_p in \mathbb{R}^n: it’s exactly the collection of all b in \mathbb{R}^n such that the vector equation (in the unknowns x_1, x_2, \ldots, x_p)

$$x_1 v_1 + x_2 v_2 + \cdots + x_p v_p = b$$

has a solution (i.e., is consistent).

Definition

Let v_1, v_2, \ldots, v_p be vectors in \mathbb{R}^n. The \textit{span} of v_1, v_2, \ldots, v_p is the collection of all linear combinations of v_1, v_2, \ldots, v_p, and is denoted $\text{Span}\{v_1, v_2, \ldots, v_p\}$. In symbols:

$$\text{Span}\{v_1, v_2, \ldots, v_p\} = \{ x_1 v_1 + x_2 v_2 + \cdots + x_p v_p \mid x_1, x_2, \ldots, x_p \text{ in } \mathbb{R} \}.$$

Synonyms: $\text{Span}\{v_1, v_2, \ldots, v_p\}$ is the subset \textit{spanned by} or \textit{generated by} v_1, v_2, \ldots, v_p.

This is the first of several definitions in this class that you simply must learn. I will give you other ways to think about Span, and ways to draw pictures, but \textit{this is the definition}. Having a vague idea what Span means will not help you solve any exam problems!
Now we have several equivalent ways of making the same statement:

1. A vector b is in the span of v_1, v_2, \ldots, v_p.

2. The vector equation

$$x_1 v_1 + x_2 v_2 + \cdots + x_p v_p = b$$

has a solution.

3. The linear system with augmented matrix

$$
\begin{pmatrix}
 \vdots \\
 v_1 \\
 \vdots \\
 v_2 \\
 \vdots \\
 v_p \\
 \vdots \\
 \vdots \\
 b \\
\end{pmatrix}
$$

is consistent.

[interactive example] ← (this is the picture of an inconsistent linear system)

Note: equivalent means that, for any given list of vectors v_1, v_2, \ldots, v_p, b, either all three statements are true, or all three statements are false.
Drawing a picture of \(\text{Span}\{v_1, v_2, \ldots, v_p\} \) is the same as drawing a picture of all linear combinations of \(v_1, v_2, \ldots, v_p \).
Pictures of Span

In \mathbb{R}^3

[interactive: span of two vectors in \mathbb{R}^3] [interactive: span of three vectors in \mathbb{R}^3]
Poll

How many vectors are in Span \[
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\]?

A. Zero
B. One
C. Infinity

Poll

In general, it appears that Span \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p\} is the smallest "linear space" (line, plane, etc.) containing the origin and all of the vectors \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p. We will make this precise later.
The whole lecture was about drawing pictures of systems of linear equations.

- **Points** and **vectors** are two ways of drawing elements of \mathbb{R}^n. Vectors are drawn as arrows.

- Vector addition, subtraction, and scalar multiplication have geometric interpretations.

- A **linear combination** is a sum of scalar multiples of vectors. This is also a geometric construction, which leads to lots of pretty pictures.

- The **span** of a set of vectors is the set of all linear combinations of those vectors. It is also fun to draw.

- A system of linear equations is equivalent to a vector equation, where the unknowns are the coefficients of a linear combination.