1. Which of the following equations are linear? Justify your answers.
 a) $3x_1 + \sqrt{x_2} = 4$
 b) $x_1 = x_2 - x_3 + 10x_4$.
 c) $\pi x + \ln(13)y + z = \sqrt{2}$

 Solution.
 a) No. The $\sqrt{x_2}$ term makes it non-linear.
 b) Yes.
 c) Yes. The $\sqrt{2}$ term is just a constant. Don’t be misled by the appearance of the natural logarithm: $\ln(13)$ is just the coefficient for y.

 If the second term had been $\ln(13y)$ instead of $\ln(13)y$, then y would have been inside the logarithm and the equation would have been non-linear.

2. Find all values of h so that the lines $x + hy = -5$ and $2x - 8y = 6$ do not intersect.

 Solution.
 We can use basic algebra, row operations, or geometric intuition.

 Using basic algebra: Let’s see what happens when the lines do intersect. In that case, there is a point (x, y) where

 $$x + hy = -5$$
 $$2x - 8y = 6.$$

 Subtracting twice the first equation from the second equation gives us

 $$x + hy = -5$$
 $$(-8 - 2h)y = 16.$$

 If $-8 - 2h = 0$ (so $h = -4$), then the second line is $0 \cdot y = 16$, which is impossible. In other words, if $h = -4$ then we cannot find a solution to the system of two equations, so the two lines do not intersect.

 On the other hand, if $h \neq -4$, then we can solve for y above:

 $$(-8 - 2h)y = 16 \quad y = \frac{16}{-8 - 2h} \quad y = \frac{8}{-4 - h}.$$

 We can now substitute this value of y into the first equation to find x:

 $$x + hy = -5 \quad x + h \cdot \frac{8}{-4 - h} = -5 \quad x = -5 - \frac{8h}{-4 - h}.$$

 Therefore, the lines fail to intersect if and only if $h = -4$.

Using row operations: Like the previous technique, let's see what happens if the lines intersect. We put the equations into augmented matrix form and use row operations.

\[
\begin{pmatrix}
1 & h & -5 \\
2 & -8 & 6
\end{pmatrix}
\overset{R_2 = R_2 - 2R_1}{\rightarrow}
\begin{pmatrix}
1 & h & -5 \\
0 & -8 - 2h & 16
\end{pmatrix}.
\]

If \(-8 - 2h = 0\) (so \(h = -4\)), then the second equation is \(0 = 16\), so our system has no solutions. In other words, the lines do not intersect.

If \(h \neq -4\), then the second equation is \((-8 - 2h)y = 16\), so

\[
y = \frac{16}{-8 - 2h} = \frac{8}{-4 - h} \text{ and } x = -5 - hy = -5 - \frac{8h}{-4 - h},
\]

and the lines intersect at \((x, y)\). Therefore, our answer is \(h = -4\).

Using intuition from geometry in \(\mathbb{R}^2\): Two non-identical lines in \(\mathbb{R}^2\) intersect if and only if they are not parallel. The second line is \(y = \frac{1}{4}x - \frac{3}{4}\), so its slope is \(\frac{1}{4}\).

If \(h \neq 0\), then the first line is \(y = -\frac{1}{h}x - \frac{5}{h}\), so the lines are parallel when \(-\frac{1}{h} = \frac{1}{4}\), which means \(h = -4\). You can check the lines aren't identical that when \(h = -4\). (And if \(h = 0\) then the first line is vertical, so it isn't parallel to the second).

3. For each of the following, answer true or false. Justify your answer.

a) Every system of linear equations has at least one solution.

b) There is a system of linear equations that has exactly 5 solutions.

c) If \(a\), \(b\), and \(c\) are real numbers, then the equation \(ax + by = c\) for \((x, y, z)\) in \(\mathbb{R}^3\) describes a line.

Solution.

a) False. Some examples from class and this worksheet have no solutions.

b) False. There are only three possibilities: no solutions, exactly one solution, or infinitely many solutions.

c) False. For example, in \(\mathbb{R}^3\), the equation \(x + y = 1\) corresponds geometrically to a vertical plane. We could write the plane in parametric form as \((t, 1-t, z)\) where \(t\) and \(z\) vary among all real numbers.

4. The picture below represents the temperatures at the nodes of a mesh.
Let T_1, \ldots, T_4 be the temperatures at the interior nodes. Suppose that the temperature at each node is the average of the four nearest nodes. For example,

$$T_1 = \frac{10 + 20 + T_2 + T_4}{4}.$$

a) Write a system of four linear equations whose solution would give the temperatures T_1, \ldots, T_4.

b) Write an augmented matrix that represents that system of equations.

Solution.

(a) The first equation was given. The others are

$$T_2 = \frac{T_1 + 20 + 40 + T_3}{4}, \quad \text{or} \quad -T_1 + 4T_2 - T_3 = 60$$

$$T_3 = \frac{T_4 + T_2 + 40 + 30}{4}, \quad \text{or} \quad -T_2 + 4T_3 - T_4 = 70$$

$$T_4 = \frac{10 + T_1 + T_3 + 30}{4}, \quad \text{or} \quad -T_1 - T_3 + 4T_4 = 40$$

(b) To put this in matrix form, we rearrange the above equations:

$$
\begin{align*}
4T_1 - T_2 - T_4 &= 30 \\
-T_1 + 4T_2 - T_3 &= 60 \\
-T_2 + 4T_3 - T_4 &= 70 \\
-T_1 - T_3 + 4T_4 &= 40
\end{align*}
$$

This gives the augmented matrix

$$
\begin{pmatrix}
4 & -1 & 0 & -1 & 30 \\
-1 & 4 & -1 & 0 & 60 \\
0 & -1 & 4 & -1 & 70 \\
-1 & 0 & -1 & 4 & 40
\end{pmatrix}
$$

5. Consider the following three planes, where we use (x, y, z) to denote points in \mathbb{R}^3:

$$
\begin{align*}
2x + 4y + 4z &= 1 \\
2x + 5y + 2z &= -1 \\
y + 3z &= 8.
\end{align*}
$$
Do all three of the planes intersect? If so, do they intersect at a single point, a line, or a plane?

Solution.
We can isolate z in the third equation using algebra, but it is probably best to do using an augmented matrix and elementary row operations.

\[
\begin{bmatrix}
2 & 4 & 4 & 1 \\
2 & 5 & 2 & -1 \\
0 & 1 & 3 & 8 \\
\end{bmatrix}
\xrightarrow{R_2 = R_2 - R_1}
\begin{bmatrix}
2 & 4 & 4 & 1 \\
0 & 1 & -2 & -2 \\
0 & 1 & 3 & 8 \\
\end{bmatrix}
\xrightarrow{R_3 = R_3 - R_2}
\begin{bmatrix}
2 & 4 & 4 & 1 \\
0 & 1 & -2 & -2 \\
0 & 0 & 5 & 10 \\
\end{bmatrix}
\]

The last line corresponds to the equation $5z = 10$, so $z = 2$. Since we don’t have much practice with row-reduction, we will use substitution to finish.

The second equation is $y - 2z = -2$, so $y - 2(2) = -2$, thus $y = 2$. The first equation is $2x + 4(2) + 4(2) = 1$, so $2x = -15$, thus $x = -15/2$. We have found that the planes intersect at the point

\[
\left(-\frac{15}{2}, 2, 2\right).
\]