Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work unless instructed otherwise.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!
Problem 1. [2 points each]

In this problem, if the statement is always true, circle T; otherwise, circle F.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>b)</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>c)</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>d)</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>e)</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

- a) If A is row equivalent to B, then A and B have the same eigenvalues.
- b) If A is similar to B, then A and B have the same characteristic polynomial.
- c) If A is similar to B, then A and B have the same eigenvectors.
- d) If A is diagonalizable, then A has n distinct eigenvalues.
- e) Every square matrix is diagonalizable if we allow complex eigenvalues and eigenvectors.
Problem 2.

In this problem, you need not explain your answers; just circle the correct one(s).

Let A be an $n \times n$ matrix.

a) [3 points] Which one of the following statements is correct?
 1. An eigenvector of A is a vector v such that $Av = \lambda v$ for a nonzero scalar λ.
 2. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a scalar λ.
 3. An eigenvector of A is a nonzero scalar λ such that $Av = \lambda v$ for some vector v.
 4. An eigenvector of A is a nonzero vector v such that $Av = \lambda v$ for a nonzero scalar λ.

b) [3 points] Which one of the following statements is not correct?
 1. An eigenvalue of A is a scalar λ such that $A - \lambda I$ is not invertible.
 2. An eigenvalue of A is a scalar λ such that $(A - \lambda I)v = 0$ has a solution.
 3. An eigenvalue of A is a scalar λ such that $Av = \lambda v$ for a nonzero vector v.
 4. An eigenvalue of A is a scalar λ such that $\det(A - \lambda I) = 0$.

c) [4 points] Which of the following 3×3 matrices are necessarily diagonalizable over the real numbers? (Circle all that apply.)
 1. A matrix with three distinct real eigenvalues.
 2. A matrix with one real eigenvalue.
 3. A matrix with a real eigenvalue λ of algebraic multiplicity 2, such that the λ-eigenspace has dimension 2.
 4. A matrix with a real eigenvalue λ such that the λ-eigenspace has dimension 2.
Problem 3.

Consider the matrix

\[
A = \begin{pmatrix}
-1 & -4 & 0 \\
1 & 3 & 0 \\
7 & 10 & 2
\end{pmatrix}.
\]

a) [4 points] Find the eigenvalues of \(A \), and compute their algebraic multiplicities.

b) [4 points] For each eigenvalue of \(A \), find a basis for the corresponding eigenspace.

c) [2 points] Is \(A \) diagonalizable? If so, find an invertible matrix \(P \) and a diagonal matrix \(D \) such that \(A = PD^1 \). If not, why not?
Problem 4.

Consider the matrix

\[A = \begin{pmatrix}
3\sqrt{3} - 1 & -5\sqrt{3} \\
2\sqrt{3} & -3\sqrt{3} - 1
\end{pmatrix} \]

a) [2 points] Find both complex eigenvalues of \(A \).

b) [2 points] Find an eigenvector corresponding to each eigenvalue.

c) [3 points] Find an invertible matrix \(P \) and a rotation-scale matrix \(C \) such that \(A = PCP^{-1} \).

d) [1 point] By what factor does \(C \) scale?

e) [2 points] By what angle does \(C \) rotate?
Problem 5.

In any given year, 10% of city dwellers will move to the country, while 90% will stay in the city. Likewise, 30% of country dwellers will move to the city, while 70% will stay in the country.

a) [3 points] Let \(x_n \) be the number of people in the city in year \(n \), and let \(y_n \) be the number of people in the country in year \(n \). Find a matrix \(A \) such that

\[
A \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}.
\]

b) [4 points] Compute the steady state of \(A \).

c) [3 points] If the region (city plus country) starts off with 1,000 residents, about how many people will live in the city 100 years later (assuming the total population stays constant)?
[Scratch work]