MATH 1553-B
 MIDTERM EXAMINATION 3

| Name | Section | |
| :--- | :--- | :--- | :--- |

1	2	3	4	5	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work unless instructed otherwise.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

In this problem, if the statement is always true, circle \mathbf{T}; otherwise, circle \mathbf{F}.
a) $\quad \mathbf{T} \quad$ If A is row equivalent to B, then A and B have the same eigenvalues.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A is similar to B, then A and B have the same characteristic polynomial.
c) $\mathbf{T} \quad \mathbf{F} \quad$ If A is similar to B, then A and B have the same eigenvectors.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A is diagonalizable, then A has n distinct eigenvalues.
e) $\mathbf{T} \quad \mathbf{F}$ Every square matrix is diagonalizable if we allow complex eigenvalues and eigenvectors.

Problem 2.

In this problem, you need not explain your answers; just circle the correct one(s). Let A be an $n \times n$ matrix.
a) [3 points] Which one of the following statements is correct?

1. An eigenvector of A is a vector v such that $A v=\lambda v$ for a nonzero scalar λ.
2. An eigenvector of A is a nonzero vector v such that $A v=\lambda \nu$ for a scalar λ.
3. An eigenvector of A is a nonzero scalar λ such that $A v=\lambda \nu$ for some vector v.
4. An eigenvector of A is a nonzero vector v such that $A v=\lambda v$ for a nonzero scalar λ.
b) [3 points] Which one of the following statements is not correct?
5. An eigenvalue of A is a scalar λ such that $A-\lambda I$ is not invertible.
6. An eigenvalue of A is a scalar λ such that $(A-\lambda I) v=0$ has a solution.
7. An eigenvalue of A is a scalar λ such that $A v=\lambda v$ for a nonzero vector v.
8. An eigenvalue of A is a scalar λ such that $\operatorname{det}(A-\lambda I)=0$.
c) [4 points] Which of the following 3×3 matrices are necessarily diagonalizable over the real numbers? (Circle all that apply.)
9. A matrix with three distinct real eigenvalues.
10. A matrix with one real eigenvalue.
11. A matrix with a real eigenvalue λ of algebraic multiplicity 2 , such that the λ-eigenspace has dimension 2.
12. A matrix with a real eigenvalue λ such that the λ-eigenspace has dimension 2.

Problem 3.

Consider the matrix

$$
A=\left(\begin{array}{ccc}
-1 & -4 & 0 \\
1 & 3 & 0 \\
7 & 10 & 2
\end{array}\right)
$$

a) [4 points] Find the eigenvalues of A, and compute their algebraic multiplicities.
b) [4 points] For each eigenvalue of A, find a basis for the corresponding eigenspace.
c) [2 points] Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. If not, why not?

Problem 4.

Consider the matrix

$$
A=\left(\begin{array}{cc}
3 \sqrt{3}-1 & -5 \sqrt{3} \\
2 \sqrt{3} & -3 \sqrt{3}-1
\end{array}\right)
$$

a) [2 points] Find both complex eigenvalues of A.
b) [2 points] Find an eigenvector corresponding to each eigenvalue.
c) [3 points] Find an invertible matrix P and a rotation-scale matrix C such that $A=P C P^{-1}$.
d) [1 point] By what factor does C scale?
e) [2 points] By what angle does C rotate?

Problem 5.

In any given year, 10% of city dwellers will move to the country, while 90% will stay in the city. Likewise, 30% of country dwellers will move to the city, while 70% will stay in the country.
a) [3 points] Let x_{n} be the number of people in the city in year n, and let y_{n} be the number of people in the country in year n. Find a matrix A such that

$$
A\binom{x_{n}}{y_{n}}=\binom{x_{n+1}}{y_{n+1}} .
$$

b) [4 points] Compute the steady state of A.
c) [3 points] If the region (city plus country) starts off with 1,000 residents, about how many people will live in the city 100 years later (assuming the total population stays constant)?
[Scratch work]

