MATH 1553-B
 PRACTICE MIDTERM 3

| Name | Section | |
| :--- | :--- | :--- | :--- |

1	2	3	4	5	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

Problem 1.

In this problem, if the statement is always true, circle \mathbf{T}; if it is always false, circle \mathbf{F}; if it is sometimes true and sometimes false, circle \mathbf{M}.
a) $\mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ If A is a 3×3 matrix with characteristic polynomial $-\lambda^{3}+$ $\lambda^{2}+\lambda$, then A is invertible.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A 3×3 matrix with two distinct eigenvalues is diagonalizable.
c) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ If A is diagonalizable and B is similar to A, then B is diagonalizable.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A diagonalizable $n \times n$ matrix admits n linearly independent eigenvectors.
e) $\mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A stochastic matrix admits a unique steady state.

Problem 2.

Give an example of a 2×2 real-valued matrix A with each of the following properties. You need not explain your answer.
a) A has no real eigenvalues.
b) A has eigenvalues 1 and 2 .
c) A is invertible but not diagonalizable.
d) A is diagonalizable but not invertible.
e) A is positive stochastic.

Problem 3.

Consider the matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & -4 \\
0 & 2 & 0 \\
2 & 2 & -2
\end{array}\right)
$$

a) [4 points] Find the eigenvalues of A, and compute their algebraic multiplicities.
b) [4 points] For each eigenvalue of A, find a basis for the corresponding eigenspace.
c) [2 points] Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. If not, why not?

Problem 4.

Consider the matrix

$$
A=\left(\begin{array}{ll}
3 & -5 \\
2 & -3
\end{array}\right)
$$

a) [3 points] Find the (complex) eigenvalues of A.
b) [2 points] For each eigenvalue of A, find a corresponding eigenvector.
c) [3 points] Find a rotation-scaling matrix C that is similar to A.
d) [1 point] By what factor does C scale?
e) [1 point] By what angle does C rotate?

Problem 5.

Consider the sequence of numbers $0,1,5,31,185, \ldots$ given by the recursive formula

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1 \\
& a_{n}=5 a_{n-1}+6 a_{n-2} \quad(n \geq 2)
\end{aligned}
$$

a) [2 points] Find a matrix A such that

$$
A\binom{a_{n-2}}{a_{n-1}}=\binom{a_{n-1}}{a_{n}}
$$

for all $n \geq 2$.
b) [3 points] Find an invertible matrix P and a diagonal matrix D such that $A=$ $P D P^{-1}$.
c) [3 points] Give a formula for A^{n}. Your answer should be a single matrix whose entries depend only on n.
d) [2 points] Give a non-recursive formula for a_{n}.
(For extra practice: what happens if you try to use this method to get a closed form for the nth Fibonacci number?)
[Scratch work]

